
Statistical Rethinking

08: Markov chain Monte Carlo

2022

Drawing the Bayesian Owl
1. Theoretical estimand

2. Scientific (causal) model(s)

3. Use 1 & 2 to build statistical model(s)

4. Simulate from 2 to validate 3 yields 1

5. Analyze real data

aNAlYzE rEAl DatA

Computing the posterior

1. Analytical approach (often impossible)

2. Grid approximation (very intensive)

3. Quadratic approximation (limited)

4. Markov chain Monte Carlo (intensive)

King Markov

The Metropolis Archipelago

Contract: King Markov must visit each island in
proportion to its population size

Here’s how he does it...

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

1
2

1
2

1 2 3 4 5 6 7
p5

proposal

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(2) Find population of proposal island.

p5

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

p4

1 2 3 4 5 6 7

proposal

(3) Find population of current island.

(2) Find population of proposal island.

(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

p5p4

1 2 3 4 5 6 7

proposal

(3) Find population of current island.

(4) Move to proposal, with probability =
p5

p4

(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.

1 2 3 4 5 6 7

(4) Move to proposal, with probability = p5

p4

(5) Repeat from (1)

(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.
(4) Move to proposal, with probability = p5

p4

1 2 3 4 5 6 7

(5) Repeat from (1)

This procedure ensures visiting each island in
proportion to its population, in the long run.

Markov chain Monte Carlo
Usual use: Draw samples from a posterior
distribution

“Islands”: parameter values

“Population size”: posterior probability

Visit each parameter value in proportion to its
posterior probability

Any number of dimensions (parameters)

“Markov chain Monte Carlo”

Chain: Sequence of draws from distribution

Markov chain: History doesn’t matter, just
where you are now

Monte Carlo: Random simulation

“Markov chain Monte Carlo”

Metropolis algorithm: Simple version of Markov
chain Monte Carlo (MCMC)

Easy to write, very general, often inefficient

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087

instead, only water molecules with different amounts of
excitation energy. These may follow any of three paths:

(a) The excitation energy is lost without dissociation
into radicals (by collision, or possibly radiation, as in
aromatic hydrocarbons).

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage.

(c) The molecules dissociate and escape from the
cage. In this case we would not expect them to move
more than a few molecular diameters through the dense
medium before being thermalized.

In accordance with the notation introduced by
Burton, Magee, and Samuel,22 the molecules following

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952).

THE JOURNAL OF CHEMICAL PHYSICS

paths (a) and (b) can be designated H 20* and those
following path (c) can be designated H 20t. It seems
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the
H 20t molecules, but this is not likely to be a complete
correspondence.

In conclusion we would like to emphasize that the
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters
used. However, this treatment is classical, and a correct
treatment must be wave mechanical; therefore the
result of this section cannot be taken as an a priori
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the
occurrence of electron capture as described by this
crude calculation. Further work is clearly needed.

VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines
NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigatiflg such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

T HE purpose of this paper is to describe a general
method, suitable for fast electronic computing

machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California.

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define dAB, the minimum distance between particles A
and B, as the shortest distance between A and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance dAB.

t We will use two-dimensional nomenclature here since it
is easier to visualize. The extension to three dimensions is obvious.

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087

instead, only water molecules with different amounts of
excitation energy. These may follow any of three paths:

(a) The excitation energy is lost without dissociation
into radicals (by collision, or possibly radiation, as in
aromatic hydrocarbons).

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage.

(c) The molecules dissociate and escape from the
cage. In this case we would not expect them to move
more than a few molecular diameters through the dense
medium before being thermalized.

In accordance with the notation introduced by
Burton, Magee, and Samuel,22 the molecules following

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952).

THE JOURNAL OF CHEMICAL PHYSICS

paths (a) and (b) can be designated H 20* and those
following path (c) can be designated H 20t. It seems
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the
H 20t molecules, but this is not likely to be a complete
correspondence.

In conclusion we would like to emphasize that the
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters
used. However, this treatment is classical, and a correct
treatment must be wave mechanical; therefore the
result of this section cannot be taken as an a priori
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the
occurrence of electron capture as described by this
crude calculation. Further work is clearly needed.

VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines
NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigatiflg such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

T HE purpose of this paper is to describe a general
method, suitable for fast electronic computing

machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California.

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define dAB, the minimum distance between particles A
and B, as the shortest distance between A and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance dAB.

t We will use two-dimensional nomenclature here since it
is easier to visualize. The extension to three dimensions is obvious.

Arianna Rosenbluth 
(1927–2020)

MANIAC

MANIAC:
Mathematical Analyzer,
Numerical Integrator,
and Computer

MANIAC:
1000 pounds
5 kilobytes of memory
70k multiplications/sec

Your laptop:
4–7 pounds
8+ million kilobytes memory
Billions of multiplications/sec

MCMC is diverse

Metropolis has yielded to newer, more
efficient algorithms

Many innovations in the last decades

Best methods use gradients

We’ll use Hamiltonian Monte Carlo

Basic Rosenbluth (aka Metropolis) algorithm

Basic Rosenbluth (aka Metropolis) algorithm

large step size small step size

Low probability

High probability

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

��� �� ."3,07 $)"*/ .0/5& $"3-0

0WFSUIJOLJOH�)BNJMUPOJBO .POUF $BSMP JO UIF SBX� ćF).$ BMHPSJUIN OFFET ĕWF UIJOHT UP HP�
	�
 B GVODUJPO U UIBU SFUVSOT UIF OFHBUJWF MPH�QSPCBCJMJUZ PG UIF EBUB BU UIF DVSSFOU QPTJUJPO 	QBSBNFUFS
WBMVFT

 	�
 B GVODUJPO grad_U UIBU SFUVSOT UIF HSBEJFOU PG UIF OFHBUJWF MPH�QSPCBCJMJUZ BU UIF DVSSFOU
QPTJUJPO
 	�
 B TUFQ TJ[Fepsilon
 	�
 B DPVOU PG MFBQGSPH TUFQTL
 BOE 	�
 B TUBSUJOH QPTJUJPOcurrent_q�
,FFQ JO NJOE UIBU UIF QPTJUJPO JT B WFDUPS PG QBSBNFUFS WBMVFT BOE UIBU UIF HSBEJFOU BMTP OFFET UP
SFUVSO B WFDUPS PG UIF TBNF MFOHUI� 4P UIBU UIFTF U BOE grad_U GVODUJPOT NBLF NPSF TFOTF
 MFU�T
QSFTFOU UIFN ĕSTU
 CVJMU DVTUPN GPS UIF �% (BVTTJBO FYBNQMF� ćF U GVODUJPO KVTU FYQSFTTFT UIF MPH�
QPTUFSJPS
 BT TUBUFE CFGPSF JO UIF NBJO UFYU�

∑

J
MPH Q(ZJ|µZ, �) +

∑

J
MPH Q(YJ|µY, �) + MPH Q(µZ|�, �.�) + MPH Q(µY, �, �.�)

4P JU�T KVTU GPVS DBMMT UP dnorm SFBMMZ�
3 DPEF

��� # U needs to return neg-log-probability
U <- function(q , a=0 , b=1 , k=0 , d=1) {

muy <- q[1]
mux <- q[2]
U <- sum(dnorm(y,muy,1,log=TRUE)) + sum(dnorm(x,mux,1,log=TRUE)) +

dnorm(muy,a,b,log=TRUE) + dnorm(mux,k,d,log=TRUE)
return(-U)

}

/PX UIF HSBEJFOU GVODUJPO SFRVJSFT UXP QBSUJBM EFSJWBUJWFT� -VDLJMZ
 (BVTTJBO EFSJWBUJWFT BSF WFSZ
DMFBO� ćF EFSJWBUJWF PG UIF MPHBSJUIN PG BOZ VOJWBSJBUF (BVTTJBO XJUINFBO B BOE TUBOEBSE EFWJBUJPO
C XJUI SFTQFDU UP B JT�

∂ MPH/(Z|B, C)
∂B =

Z− B
C�

"OE TJODF UIF EFSJWBUJWF PG B TVN JT B TVN PG EFSJWBUJWFT
 UIJT JT BMM XF OFFE UP XSJUF UIF HSBEJFOUT�
∂6
∂µY

=
∂ MPH/(Y|µY, �)

∂µY
+

∂ MPH/(µY|�, �.�)
∂µY

=
∑

J

YJ − µY
�� +

�− µY
�.��

"OE UIF HSBEJFOU GPS µZ IBT UIF TBNF GPSN� /PX JO DPEF GPSN�
3 DPEF

��� # gradient function
need vector of partial derivatives of U with respect to vector q
U_gradient <- function(q , a=0 , b=1 , k=0 , d=1) {

muy <- q[1]
mux <- q[2]
G1 <- sum(y - muy) + (a - muy)/b^2 #dU/dmuy
G2 <- sum(x - mux) + (k - mux)/d^2 #dU/dmux
return(c(-G1 , -G2)) # negative bc energy is neg-log-prob

}
test data
set.seed(7)
y <- rnorm(50)
x <- rnorm(50)
x <- as.numeric(scale(x))
y <- as.numeric(scale(y))

ćF HSBEJFOU GVODUJPO BCPWF JTO�U UPP CBE GPS UIJT NPEFM� #VU JU DBO CF UFSSJGZJOH GPS B SFBTPOBCMZ
DPNQMFY NPEFM� ćBU JT XIZ UPPMT MJLF 4UBO CVJME UIF HSBEJFOUT EZOBNJDBMMZ
 VTJOH UIF NPEFM EFĕOJ�
UJPO� /PX XF BSF SFBEZ UP WJTJU UIF IFBSU� 5P VOEFSTUBOE TPNF PG UIF EFUBJMT IFSF
 ZPV TIPVME SFBE
3BEGPSE /FBM�T DIBQUFS JO UIF)BOECPPL PG .BSLPW $IBJO .POUF $BSMP� "SNFE XJUI UIF MPH�QPTUFSJPS
BOE HSBEJFOU GVODUJPOT
 IFSF�T UIF DPEF UP QSPEVDF 'ĶĴłĿĲ Ƒ�Ǝ�

����)".*-50/*"/ .0/5& $"3-0 ���

3 DPEF
���library(shape) # for fancy arrows

Q <- list()
Q$q <- c(-0.1,0.2)
pr <- 0.3
plot(NULL , ylab="muy" , xlab="mux" , xlim=c(-pr,pr) , ylim=c(-pr,pr))
step <- 0.03
L <- 11 # 0.03/28 for U-turns --- 11 for working example
n_samples <- 4
path_col <- col.alpha("black",0.5)
points(Q$q[1] , Q$q[2] , pch=4 , col="black")
for (i in 1:n_samples) {

Q <- HMC2(U , U_gradient , step , L , Q$q)
if (n_samples < 10) {
for (j in 1:L) {
K0 <- sum(Q$ptraj[j,]^2)/2 # kinetic energy
lines(Q$traj[j:(j+1),1] , Q$traj[j:(j+1),2] , col=path_col , lwd=1+2*K0)

}
points(Q$traj[1:L+1,] , pch=16 , col="white" , cex=0.35)
Arrows(Q$traj[L,1] , Q$traj[L,2] , Q$traj[L+1,1] , Q$traj[L+1,2] ,

arr.length=0.35 , arr.adj = 0.7)
text(Q$traj[L+1,1] , Q$traj[L+1,2] , i , cex=0.8 , pos=4 , offset=0.4)

}
points(Q$traj[L+1,1] , Q$traj[L+1,2] , pch=ifelse(Q$accept==1 , 16 , 1) ,

col=ifelse(abs(Q$dH)>0.1 , "red" , "black"))
}

ćF GVODUJPO HMC2 JT CVJMU JOUP rethinking� *U JT CBTFE VQPO POF PG 3BEGPSE/FBM�T FYBNQMF TDSJQUT����
*U JTO�U BDUVBMMZ UPP DPNQMJDBUFE� -FU�T UPVS UISPVHI JU
 POF TUFQ BU B UJNF
 UP UBLF UIF NBHJD BXBZ� ćJT
GVODUJPO SVOT B TJOHMF USBKFDUPSZ
 BOE TP QSPEVDFT B TJOHMF TBNQMF� :PV OFFE UP VTF JU SFQFBUFEMZ UP
CVJME B DIBJO� ćBU�T XIBU UIF MPPQ BCPWF EPFT� ćF ĕSTU DIVOL PG UIF GVODUJPO DIPPTFT SBOEPN
NPNFOUVN�UIF ĘJDL PG UIF QBSUJDMF�BOE JOJUJBMJ[FT UIF USBKFDUPSZ�

3 DPEF
���HMC2 <- function (U, grad_U, epsilon, L, current_q) {

q = current_q
p = rnorm(length(q),0,1) # random flick - p is momentum.
current_p = p
Make a half step for momentum at the beginning
p = p - epsilon * grad_U(q) / 2
initialize bookkeeping - saves trajectory
qtraj <- matrix(NA,nrow=L+1,ncol=length(q))
ptraj <- qtraj
qtraj[1,] <- current_q
ptraj[1,] <- p

ćFO UIF BDUJPO DPNFT JO B MPPQ PWFS MFBQGSPH TUFQT� L TUFQT BSF UBLFO
 VTJOH UIF HSBEJFOU UP DPNQVUF
B MJOFBS BQQSPYJNBUJPO PG UIF MPH�QPTUFSJPS TVSGBDF BU FBDI QPJOU�

3 DPEF
���# Alternate full steps for position and momentum

for (i in 1:L) {
q = q + epsilon * p # Full step for the position
Make a full step for the momentum, except at end of trajectory
if (i!=L) {

p = p - epsilon * grad_U(q)
ptraj[i+1,] <- p

}

Pages 276–278

Calculus is a superpower
Hamiltonian Monte Carlo needs gradients

How does it get them? Write them yourself or…

Auto-diff: Automatic differentiation

Symbolic derivatives of your model code

Used in many machine learning approaches;
“Backpropagation” is special case

Stanisław Ulam (1909–1984)mc-stan.org

Stanisław Ulam and his daughter Claire with MANIAC

PAUSE

library(rethinking)
data(WaffleDivorce)
d <- WaffleDivorce

dat <- list(
 D = standardize(d$Divorce),
 M = standardize(d$Marriage),
 A = standardize(d$MedianAgeMarriage)
)

f <- alist(
 D ~ dnorm(mu,sigma),
 mu <- a + bM*M + bA*A,
 a ~ dnorm(0,0.2),
 bM ~ dnorm(0,0.5),
 bA ~ dnorm(0,0.5),
 sigma ~ dexp(1)
)

mq <- quap(f , data=dat)

μi = α + βMMi + βAAi

Di ∼ Normal(μi, σ)

α ∼ Normal(0,0.2)
βM ∼ Normal(0,0.5)
βA ∼ Normal(0,0.5)
σ ∼ Exponential(1)

Example: Divorce data

f <- alist(
 D ~ dnorm(mu,sigma),
 mu <- a + bM*M + bA*A,
 a ~ dnorm(0,0.2),
 bM ~ dnorm(0,0.5),
 bA ~ dnorm(0,0.5),
 sigma ~ dexp(1)
)

mq <- quap(f , data=dat)

library(cmdstanr)
mHMC <- ulam(f , data=dat)

μi = α + βMMi + βAAi

Di ∼ Normal(μi, σ)

α ∼ Normal(0,0.2)
βM ∼ Normal(0,0.5)
βA ∼ Normal(0,0.5)
σ ∼ Exponential(1)

Example: Divorce data

f <- alist(
 D ~ dnorm(mu,sigma),
 mu <- a + bM*M + bA*A,
 a ~ dnorm(0,0.2),
 bM ~ dnorm(0,0.5),
 bA ~ dnorm(0,0.5),
 sigma ~ dexp(1)
)

mq <- quap(f , data=dat)

library(cmdstanr)
mHMC <- ulam(f , data=dat)

μi = α + βMMi + βAAi

Di ∼ Normal(μi, σ)

α ∼ Normal(0,0.2)
βM ∼ Normal(0,0.5)
βA ∼ Normal(0,0.5)
σ ∼ Exponential(1)

Example: Divorce data

Pure Stan approach // stancode(mHMC)
data{
 // the observed variables
 vector[50] D;
 vector[50] A;
 vector[50] M;
}
parameters{
 // the unobserved variables
 real a;
 real bM;
 real bA;
 real<lower=0> sigma;
}
model{
 // compute the log posterior probability
 vector[50] mu;
 sigma ~ exponential(1);
 bA ~ normal(0 , 0.5);
 bM ~ normal(0 , 0.5);
 a ~ normal(0 , 0.2);
 for (i in 1:50) {
 mu[i] = a + bM * M[i] + bA * A[i];
 }
 D ~ normal(mu , sigma);
}

ulam() just builds Stan code

Stan code is portable, runs
on anything

Learn Stan, work in any
scripting language

// stancode(mHMC)
data{
 // the observed variables
 vector[50] D;
 vector[50] A;
 vector[50] M;
}
parameters{
 // the unobserved variables
 real a;
 real bM;
 real bA;
 real<lower=0> sigma;
}
model{
 // compute the log posterior probability
 vector[50] mu;
 sigma ~ exponential(1);
 bA ~ normal(0 , 0.5);
 bM ~ normal(0 , 0.5);
 a ~ normal(0 , 0.2);
 for (i in 1:50) {
 mu[i] = a + bM * M[i] + bA * A[i];
 }
 D ~ normal(mu , sigma);
}

Must declare the type of each observed
variable so Stan can catch errors and
know what operations are allowed

// stancode(mHMC)
data{
 // the observed variables
 vector[50] D;
 vector[50] A;
 vector[50] M;
}
parameters{
 // the unobserved variables
 real a;
 real bM;
 real bA;
 real<lower=0> sigma;
}
model{
 // compute the log posterior probability
 vector[50] mu;
 sigma ~ exponential(1);
 bA ~ normal(0 , 0.5);
 bM ~ normal(0 , 0.5);
 a ~ normal(0 , 0.2);
 for (i in 1:50) {
 mu[i] = a + bM * M[i] + bA * A[i];
 }
 D ~ normal(mu , sigma);
}

Must declare the type of each observed
variable so Stan can catch errors and
know what operations are allowed

Unobserved variables also need checks
and constraints. Declared here.

// stancode(mHMC)
data{
 // the observed variables
 vector[50] D;
 vector[50] A;
 vector[50] M;
}
parameters{
 // the unobserved variables
 real a;
 real bM;
 real bA;
 real<lower=0> sigma;
}
model{
 // compute the log posterior probability
 vector[50] mu;
 sigma ~ exponential(1);
 bA ~ normal(0 , 0.5);
 bM ~ normal(0 , 0.5);
 a ~ normal(0 , 0.2);
 for (i in 1:50) {
 mu[i] = a + bM * M[i] + bA * A[i];
 }
 D ~ normal(mu , sigma);
}

Must declare the type of each observed
variable so Stan can catch errors and
know what operations are allowed

Unobserved variables also need checks
and constraints. Declared here.

Declare the distributional parts of the
model, sufficient to compute posterior
probability

In big models, this part can be very
complex

Pure Stan approach // stancode(mHMC)
data{
 // the observed variables
 vector[50] D;
 vector[50] A;
 vector[50] M;
}
parameters{
 // the unobserved variables
 real a;
 real bM;
 real bA;
 real<lower=0> sigma;
}
model{
 // compute the log posterior probability
 vector[50] mu;
 sigma ~ exponential(1);
 bA ~ normal(0 , 0.5);
 bM ~ normal(0 , 0.5);
 a ~ normal(0 , 0.2);
 for (i in 1:50) {
 mu[i] = a + bM * M[i] + bA * A[i];
 }
 D ~ normal(mu , sigma);
}

Save Stan code as own file

mHMC_stan <- cstan(file="08_mHMC.stan"
, data=dat)

Extract samples and
proceed as usual

post <- extract.samples(mHMC_stan)

Drawing the Markov Owl
Complex machinery, but lots of diagnostics

(1) Trace plots

(2) Trace rank plots

(3) R-hat convergence measure

(4) Number of effective samples

(5) Divergent transitions

Trace plots

0 200 400 600 800 1000

-0
.6

0.
0

0.
4

n_eff = 321a

0 200 400 600 800 1000

-0
.5

0.
5

n_eff = 292bM

0 200 400 600 800 1000

-1
.0

0.
0
0.
5 n_eff = 224bA

0 200 400 600 800 1000
0.
6

0.
8

1.
0

1.
2 n_eff = 440sigma

Trace plots

0 200 400 600 800 1000

-0
.6

0.
0

0.
4

n_eff = 321a

0 200 400 600 800 1000

-0
.5

0.
5

n_eff = 292bM

0 200 400 600 800 1000

-1
.0

0.
0
0.
5 n_eff = 224bA

0 200 400 600 800 1000
0.
6

0.
8

1.
0

1.
2 n_eff = 440sigma

library(cmdstanr)
mHMC <- ulam(f , data=dat)

mHMC <- ulam(f , data=dat , chains=4 , cores=4)

μi = α + βMMi + βAAi

Di ∼ Normal(μi, σ)

α ∼ Normal(0,0.2)
βM ∼ Normal(0,0.5)
βA ∼ Normal(0,0.5)
σ ∼ Exponential(1)

Need more than 1 chain to check
convergence

Convergence: Each chain explores the
right distribution and every chain
explores the same distribution

Trace plots

0 200 400 600 800 1000

-0
.5

0.
5

1.
5

n_eff = 1632a

0 200 400 600 800 1000

-0
.5

0.
0

0.
5

1.
0

n_eff = 1137bM

0 200 400 600 800 1000

-1
.0

0.
0

1.
0

n_eff = 1160bA

0 200 400 600 800 1000
1.
0

1.
5

2.
0

n_eff = 1504sigma

0 200 400 600 800 1000

-0
.5

0.
5

1.
5

n_eff = 1632a

0 200 400 600 800 1000

-0
.5

0.
0

0.
5

1.
0

n_eff = 1137bM

0 200 400 600 800 1000

-1
.0

0.
0

1.
0

n_eff = 1160bA

0 200 400 600 800 1000
1.
0

1.
5

2.
0

n_eff = 1504sigma

Trace plots

0 200 400 600 800 1000

-0
.5

0.
5

1.
5

n_eff = 1632a

0 200 400 600 800 1000

-0
.5

0.
0

0.
5

1.
0

n_eff = 1137bM

0 200 400 600 800 1000

-1
.0

0.
0

1.
0

n_eff = 1160bA

0 200 400 600 800 1000
1.
0

1.
5

2.
0

n_eff = 1504sigma

Trace plots

0 200 400 600 800 1000

-0
.5

0.
5

1.
5

n_eff = 1632a

0 200 400 600 800 1000

-0
.5

0.
0

0.
5

1.
0

n_eff = 1137bM

0 200 400 600 800 1000

-1
.0

0.
0

1.
0

n_eff = 1160bA

0 200 400 600 800 1000
1.
0

1.
5

2.
0

n_eff = 1504sigma

Trace plots

Trace rank (Trank) plots
n_eff = 1632a n_eff = 1137bM

n_eff = 1160bA n_eff = 1504sigma

Trace rank (Trank) plots
n_eff = 1632a n_eff = 1137bM

n_eff = 1160bA n_eff = 1504sigma

R-hat
When chains converge:

(1) Start and end of each chain explores
same region

(2) Independent chains explore same region

R-hat is a ratio of variances:  
As total variance shrinks to average
variance within chains, R-hat approaches 1

NO GUARANTEES; NOT A TEST
0 200 400 600 800 1000

0.
00

0.
10

0.
20

sample
va
ria
nc
e

between

within

n_eff
Estimate of number of effective
samples

“How long would the chain be, if
each sample was independent of
the one before it?”

When samples are autocorrelated,
you have fewer effective samples

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C
F

Series post[, 1, 1]

Divergent transitions
Divergent transition: A kind of
rejected proposal

Simulation diverges from true path

Many DTs: poor exploration &
possible bias

Will discuss again in later lecture

Bad chains
y <- c(-1,1)
set.seed(11)
m9.2 <- ulam(
 alist(
 y ~ dnorm(mu , sigma),
 mu <- alpha,
 alpha ~ dnorm(0 , 1000),
 sigma ~ dexp(0.0001)
) , data=list(y=y) , chains=3 , cores=3)

Bad chains
y <- c(-1,1)
set.seed(11)
m9.2 <- ulam(
 alist(
 y ~ dnorm(mu , sigma),
 mu <- alpha,
 alpha ~ dnorm(0 , 1000),
 sigma ~ dexp(0.0001)
) , data=list(y=y) , chains=3 , cores=3)

Bad chains
y <- c(-1,1)
set.seed(11)
m9.2 <- ulam(
 alist(
 y ~ dnorm(mu , sigma),
 mu <- alpha,
 alpha ~ dnorm(0 , 1000),
 sigma ~ dexp(0.0001)
) , data=list(y=y) , chains=3 , cores=3)

0 200 400 600 800 1000

-1
50
0

0
10
00

n_eff = 121alpha

0 200 400 600 800 1000

0
40
00

10
00
0

n_eff = 169sigma

n_eff = 121alpha n_eff = 169sigma

The Folk Theorem of
Statistical Computing
“When you have computational
problems, often there’s a problem
with your model.”

Andrew Gelman 
Spider-Man of Bayesian
data analysis

Bad chains
y <- c(-1,1)
set.seed(11)
m9.2 <- ulam(
 alist(
 y ~ dnorm(mu , sigma),
 mu <- alpha,
 alpha ~ dnorm(0 , 1000),
 sigma ~ dexp(0.0001)
) , data=list(y=y) , chains=3 ,
cores=3)

m9.3 <- ulam(
 alist(
 y ~ dnorm(mu , sigma),
 mu <- alpha,
 alpha ~ dnorm(1 , 10),
 sigma ~ dexp(1)
) , data=list(y=y) , chains=3 , cores=3)

0 200 400 600 800 1000

-1
0

-5
0

5

n_eff = 424alpha

0 200 400 600 800 1000

1
2

3
4

5
6

7

n_eff = 501sigma

n_eff = 424alpha n_eff = 501sigma

El Pueblo Unido
Desktop MCMC has been a revolution in
scientific computing

Custom scientific modeling

High-dimension

Propagate measurement error

Do not “pipette by mouth” Sir David Spiegelhalter

Course Schedule
Week 1 Bayesian inference Chapters 1, 2, 3
Week 2 Linear models & Causal Inference Chapter 4
Week 3 Causes, Confounds & Colliders Chapters 5 & 6
Week 4 Overfitting / MCMC Chapters 7, 8, 9
Week 5 Generalized Linear Models Chapters 10, 11
Week 6 Integers & Other Monsters Chapters 11 & 12
Week 7 Multilevel models I Chapter 13
Week 8 Multilevel models II Chapter 14
Week 9 Measurement & Missingness Chapter 15
Week 10 Generalized Linear Madness Chapter 16

https://github.com/rmcelreath/stat_rethinking_2022

