
Statistical Rethinking

08: Markov chain Monte Carlo

2022









Drawing the Bayesian Owl
1. Theoretical estimand 

2. Scientific (causal) model(s) 

3. Use 1 & 2 to build statistical model(s) 

4. Simulate from 2 to validate 3 yields 1 

5. Analyze real data



aNAlYzE rEAl DatA



Computing the posterior

1. Analytical approach (often impossible) 

2. Grid approximation (very intensive) 

3. Quadratic approximation (limited) 

4. Markov chain Monte Carlo (intensive)



King Markov



The Metropolis Archipelago



Contract: King Markov must visit each island in 
proportion to its population size

Here’s how he does it...



(1) Flip a coin to choose island on left or right. 
Call it the “proposal” island.
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(1) Flip a coin to choose island on left or right. 
Call it the “proposal” island.

(2) Find population of proposal island.
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(1) Flip a coin to choose island on left or right. 
Call it the “proposal” island.
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(3) Find population of current island.

(2) Find population of proposal island.



(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right. 
Call it the “proposal” island.
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(3) Find population of current island.

(4) Move to proposal, with probability = 
p5

p4



(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right. 
Call it the “proposal” island.

(3) Find population of current island.
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(4) Move to proposal, with probability = p5

p4

(5) Repeat from (1)



(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right. 
Call it the “proposal” island.

(3) Find population of current island.
(4) Move to proposal, with probability = p5

p4

1 2 3 4 5 6 7

(5) Repeat from (1)

This procedure ensures visiting each island in 
proportion to its population, in the long run.







Markov chain Monte Carlo
Usual use: Draw samples from a posterior 
distribution 

“Islands”: parameter values 

“Population size”: posterior probability 

Visit each parameter value in proportion to its 
posterior probability 

Any number of dimensions (parameters)



“Markov chain Monte Carlo”

Chain: Sequence of draws from distribution 

Markov chain: History doesn’t matter, just 
where you are now 

Monte Carlo: Random simulation



“Markov chain Monte Carlo”

Metropolis algorithm: Simple version of Markov 
chain Monte Carlo (MCMC) 

Easy to write, very general, often inefficient



Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)
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instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 

THE JOURNAL OF CHEMICAL PHYSICS 

paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 
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Equation of State Calculations by Fast Computing Machines 
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AND 
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A general method, suitable for fast computing machines, for investigatiflg such properties as equations of 
state for substances consisting of interacting individual molecules is described. The method consists of a 
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere 
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared 
to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 
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Arianna Rosenbluth 
(1927–2020)



MANIAC



MANIAC: 
Mathematical Analyzer, 
Numerical Integrator, 
and Computer

MANIAC: 
1000 pounds 
5 kilobytes of memory 
70k multiplications/sec 

Your laptop: 
4–7 pounds 
8+ million kilobytes memory 
Billions of multiplications/sec



MCMC is diverse

Metropolis has yielded to newer, more 
efficient algorithms 

Many innovations in the last decades 

Best methods use gradients 

We’ll use Hamiltonian Monte Carlo



Basic Rosenbluth (aka Metropolis) algorithm



Basic Rosenbluth (aka Metropolis) algorithm

large step size small step size



Low probability

High probability



Hamiltonian Monte Carlo



Hamiltonian Monte Carlo
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	�
 B GVODUJPO U UIBU SFUVSOT UIF OFHBUJWF MPH�QSPCBCJMJUZ PG UIF EBUB BU UIF DVSSFOU QPTJUJPO 	QBSBNFUFS
WBMVFT

 	�
 B GVODUJPO grad_U UIBU SFUVSOT UIF HSBEJFOU PG UIF OFHBUJWF MPH�QSPCBCJMJUZ BU UIF DVSSFOU
QPTJUJPO
 	�
 B TUFQ TJ[Fepsilon
 	�
 B DPVOU PG MFBQGSPH TUFQTL
 BOE 	�
 B TUBSUJOH QPTJUJPOcurrent_q�
,FFQ JO NJOE UIBU UIF QPTJUJPO JT B WFDUPS PG QBSBNFUFS WBMVFT BOE UIBU UIF HSBEJFOU BMTP OFFET UP
SFUVSO B WFDUPS PG UIF TBNF MFOHUI� 4P UIBU UIFTF U BOE grad_U GVODUJPOT NBLF NPSF TFOTF
 MFU�T
QSFTFOU UIFN ĕSTU
 CVJMU DVTUPN GPS UIF �% (BVTTJBO FYBNQMF� ćF U GVODUJPO KVTU FYQSFTTFT UIF MPH�
QPTUFSJPS
 BT TUBUFE CFGPSF JO UIF NBJO UFYU�
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4P JU�T KVTU GPVS DBMMT UP dnorm SFBMMZ�
3 DPEF

��� # U needs to return neg-log-probability
U <- function( q , a=0 , b=1 , k=0 , d=1 ) {

muy <- q[1]
mux <- q[2]
U <- sum( dnorm(y,muy,1,log=TRUE) ) + sum( dnorm(x,mux,1,log=TRUE) ) +

dnorm(muy,a,b,log=TRUE) + dnorm(mux,k,d,log=TRUE)
return( -U )

}

/PX UIF HSBEJFOU GVODUJPO SFRVJSFT UXP QBSUJBM EFSJWBUJWFT� -VDLJMZ
 (BVTTJBO EFSJWBUJWFT BSF WFSZ
DMFBO� ćF EFSJWBUJWF PG UIF MPHBSJUIN PG BOZ VOJWBSJBUF (BVTTJBO XJUINFBO B BOE TUBOEBSE EFWJBUJPO
C XJUI SFTQFDU UP B JT�

∂ MPH/(Z|B, C)
∂B =

Z− B
C�

"OE TJODF UIF EFSJWBUJWF PG B TVN JT B TVN PG EFSJWBUJWFT
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3 DPEF

��� # gradient function
# need vector of partial derivatives of U with respect to vector q
U_gradient <- function( q , a=0 , b=1 , k=0 , d=1 ) {

muy <- q[1]
mux <- q[2]
G1 <- sum( y - muy ) + (a - muy)/b^2 #dU/dmuy
G2 <- sum( x - mux ) + (k - mux)/d^2 #dU/dmux
return( c( -G1 , -G2 ) ) # negative bc energy is neg-log-prob

}
# test data
set.seed(7)
y <- rnorm(50)
x <- rnorm(50)
x <- as.numeric(scale(x))
y <- as.numeric(scale(y))

ćF HSBEJFOU GVODUJPO BCPWF JTO�U UPP CBE GPS UIJT NPEFM� #VU JU DBO CF UFSSJGZJOH GPS B SFBTPOBCMZ
DPNQMFY NPEFM� ćBU JT XIZ UPPMT MJLF 4UBO CVJME UIF HSBEJFOUT EZOBNJDBMMZ
 VTJOH UIF NPEFM EFĕOJ�
UJPO� /PX XF BSF SFBEZ UP WJTJU UIF IFBSU� 5P VOEFSTUBOE TPNF PG UIF EFUBJMT IFSF
 ZPV TIPVME SFBE
3BEGPSE /FBM�T DIBQUFS JO UIF )BOECPPL PG .BSLPW $IBJO .POUF $BSMP� "SNFE XJUI UIF MPH�QPTUFSJPS
BOE HSBEJFOU GVODUJPOT
 IFSF�T UIF DPEF UP QSPEVDF 'ĶĴłĿĲ Ƒ�Ǝ�
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3 DPEF
���library(shape) # for fancy arrows

Q <- list()
Q$q <- c(-0.1,0.2)
pr <- 0.3
plot( NULL , ylab="muy" , xlab="mux" , xlim=c(-pr,pr) , ylim=c(-pr,pr) )
step <- 0.03
L <- 11 # 0.03/28 for U-turns --- 11 for working example
n_samples <- 4
path_col <- col.alpha("black",0.5)
points( Q$q[1] , Q$q[2] , pch=4 , col="black" )
for ( i in 1:n_samples ) {

Q <- HMC2( U , U_gradient , step , L , Q$q )
if ( n_samples < 10 ) {
for ( j in 1:L ) {
K0 <- sum(Q$ptraj[j,]^2)/2 # kinetic energy
lines( Q$traj[j:(j+1),1] , Q$traj[j:(j+1),2] , col=path_col , lwd=1+2*K0 )

}
points( Q$traj[1:L+1,] , pch=16 , col="white" , cex=0.35 )
Arrows( Q$traj[L,1] , Q$traj[L,2] , Q$traj[L+1,1] , Q$traj[L+1,2] ,

arr.length=0.35 , arr.adj = 0.7 )
text( Q$traj[L+1,1] , Q$traj[L+1,2] , i , cex=0.8 , pos=4 , offset=0.4 )

}
points( Q$traj[L+1,1] , Q$traj[L+1,2] , pch=ifelse( Q$accept==1 , 16 , 1 ) ,

col=ifelse( abs(Q$dH)>0.1 , "red" , "black" ) )
}

ćF GVODUJPO HMC2 JT CVJMU JOUP rethinking� *U JT CBTFE VQPO POF PG 3BEGPSE/FBM�T FYBNQMF TDSJQUT����
*U JTO�U BDUVBMMZ UPP DPNQMJDBUFE� -FU�T UPVS UISPVHI JU
 POF TUFQ BU B UJNF
 UP UBLF UIF NBHJD BXBZ� ćJT
GVODUJPO SVOT B TJOHMF USBKFDUPSZ
 BOE TP QSPEVDFT B TJOHMF TBNQMF� :PV OFFE UP VTF JU SFQFBUFEMZ UP
CVJME B DIBJO� ćBU�T XIBU UIF MPPQ BCPWF EPFT� ćF ĕSTU DIVOL PG UIF GVODUJPO DIPPTFT SBOEPN
NPNFOUVN�UIF ĘJDL PG UIF QBSUJDMF�BOE JOJUJBMJ[FT UIF USBKFDUPSZ�

3 DPEF
���HMC2 <- function (U, grad_U, epsilon, L, current_q) {

q = current_q
p = rnorm(length(q),0,1) # random flick - p is momentum.
current_p = p
# Make a half step for momentum at the beginning
p = p - epsilon * grad_U(q) / 2
# initialize bookkeeping - saves trajectory
qtraj <- matrix(NA,nrow=L+1,ncol=length(q))
ptraj <- qtraj
qtraj[1,] <- current_q
ptraj[1,] <- p

ćFO UIF BDUJPO DPNFT JO B MPPQ PWFS MFBQGSPH TUFQT� L TUFQT BSF UBLFO
 VTJOH UIF HSBEJFOU UP DPNQVUF
B MJOFBS BQQSPYJNBUJPO PG UIF MPH�QPTUFSJPS TVSGBDF BU FBDI QPJOU�

3 DPEF
���# Alternate full steps for position and momentum

for ( i in 1:L ) {
q = q + epsilon * p # Full step for the position
# Make a full step for the momentum, except at end of trajectory
if ( i!=L ) {

p = p - epsilon * grad_U(q)
ptraj[i+1,] <- p

}

Pages 276–278





Calculus is a superpower
Hamiltonian Monte Carlo needs gradients 

How does it get them? Write them yourself or… 

Auto-diff: Automatic differentiation 

Symbolic derivatives of your model code 

Used in many machine learning approaches; 
“Backpropagation” is special case



Stanisław Ulam (1909–1984)mc-stan.org



Stanisław Ulam and his daughter Claire with MANIAC



PAUSE



library(rethinking) 
data(WaffleDivorce) 
d <- WaffleDivorce 

dat <- list( 
    D = standardize(d$Divorce), 
    M = standardize(d$Marriage), 
    A = standardize(d$MedianAgeMarriage) 
) 

f <- alist( 
        D ~ dnorm(mu,sigma), 
        mu <- a + bM*M + bA*A, 
        a ~ dnorm(0,0.2), 
        bM ~ dnorm(0,0.5), 
        bA ~ dnorm(0,0.5), 
        sigma ~ dexp(1) 
    ) 

mq <- quap( f , data=dat )

μi = α + βMMi + βAAi

Di ∼ Normal(μi, σ)

α ∼ Normal(0,0.2)
βM ∼ Normal(0,0.5)
βA ∼ Normal(0,0.5)
σ ∼ Exponential(1)

Example: Divorce data
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        mu <- a + bM*M + bA*A, 
        a ~ dnorm(0,0.2), 
        bM ~ dnorm(0,0.5), 
        bA ~ dnorm(0,0.5), 
        sigma ~ dexp(1) 
    ) 

mq <- quap( f , data=dat ) 

library(cmdstanr) 
mHMC <- ulam( f , data=dat )

μi = α + βMMi + βAAi

Di ∼ Normal(μi, σ)

α ∼ Normal(0,0.2)
βM ∼ Normal(0,0.5)
βA ∼ Normal(0,0.5)
σ ∼ Exponential(1)

Example: Divorce data



Pure Stan approach // stancode(mHMC) 
data{ 
    // the observed variables 
    vector[50] D; 
    vector[50] A; 
    vector[50] M; 
} 
parameters{ 
    // the unobserved variables 
    real a; 
    real bM; 
    real bA; 
    real<lower=0> sigma; 
} 
model{ 
    // compute the log posterior probability 
    vector[50] mu; 
    sigma ~ exponential( 1 ); 
    bA ~ normal( 0 , 0.5 ); 
    bM ~ normal( 0 , 0.5 ); 
    a ~ normal( 0 , 0.2 ); 
    for ( i in 1:50 ) { 
        mu[i] = a + bM * M[i] + bA * A[i]; 
    } 
    D ~ normal( mu , sigma ); 
}

ulam() just builds Stan code 

Stan code is portable, runs 
on anything 

Learn Stan, work in any 
scripting language



// stancode(mHMC) 
data{ 
    // the observed variables 
    vector[50] D; 
    vector[50] A; 
    vector[50] M; 
} 
parameters{ 
    // the unobserved variables 
    real a; 
    real bM; 
    real bA; 
    real<lower=0> sigma; 
} 
model{ 
    // compute the log posterior probability 
    vector[50] mu; 
    sigma ~ exponential( 1 ); 
    bA ~ normal( 0 , 0.5 ); 
    bM ~ normal( 0 , 0.5 ); 
    a ~ normal( 0 , 0.2 ); 
    for ( i in 1:50 ) { 
        mu[i] = a + bM * M[i] + bA * A[i]; 
    } 
    D ~ normal( mu , sigma ); 
}

Must declare the type of each observed 
variable so Stan can catch errors and 
know what operations are allowed



// stancode(mHMC) 
data{ 
    // the observed variables 
    vector[50] D; 
    vector[50] A; 
    vector[50] M; 
} 
parameters{ 
    // the unobserved variables 
    real a; 
    real bM; 
    real bA; 
    real<lower=0> sigma; 
} 
model{ 
    // compute the log posterior probability 
    vector[50] mu; 
    sigma ~ exponential( 1 ); 
    bA ~ normal( 0 , 0.5 ); 
    bM ~ normal( 0 , 0.5 ); 
    a ~ normal( 0 , 0.2 ); 
    for ( i in 1:50 ) { 
        mu[i] = a + bM * M[i] + bA * A[i]; 
    } 
    D ~ normal( mu , sigma ); 
}

Must declare the type of each observed 
variable so Stan can catch errors and 
know what operations are allowed

Unobserved variables also need checks 
and constraints. Declared here.



// stancode(mHMC) 
data{ 
    // the observed variables 
    vector[50] D; 
    vector[50] A; 
    vector[50] M; 
} 
parameters{ 
    // the unobserved variables 
    real a; 
    real bM; 
    real bA; 
    real<lower=0> sigma; 
} 
model{ 
    // compute the log posterior probability 
    vector[50] mu; 
    sigma ~ exponential( 1 ); 
    bA ~ normal( 0 , 0.5 ); 
    bM ~ normal( 0 , 0.5 ); 
    a ~ normal( 0 , 0.2 ); 
    for ( i in 1:50 ) { 
        mu[i] = a + bM * M[i] + bA * A[i]; 
    } 
    D ~ normal( mu , sigma ); 
}

Must declare the type of each observed 
variable so Stan can catch errors and 
know what operations are allowed

Unobserved variables also need checks 
and constraints. Declared here.

Declare the distributional parts of the 
model, sufficient to compute posterior 
probability 

In big models, this part can be very 
complex



Pure Stan approach // stancode(mHMC) 
data{ 
    // the observed variables 
    vector[50] D; 
    vector[50] A; 
    vector[50] M; 
} 
parameters{ 
    // the unobserved variables 
    real a; 
    real bM; 
    real bA; 
    real<lower=0> sigma; 
} 
model{ 
    // compute the log posterior probability 
    vector[50] mu; 
    sigma ~ exponential( 1 ); 
    bA ~ normal( 0 , 0.5 ); 
    bM ~ normal( 0 , 0.5 ); 
    a ~ normal( 0 , 0.2 ); 
    for ( i in 1:50 ) { 
        mu[i] = a + bM * M[i] + bA * A[i]; 
    } 
    D ~ normal( mu , sigma ); 
}

Save Stan code as own file

mHMC_stan <- cstan( file="08_mHMC.stan" 
, data=dat )

Extract samples and 
proceed as usual

post <- extract.samples(mHMC_stan)



Drawing the Markov Owl
Complex machinery, but lots of diagnostics 

(1) Trace plots 

(2) Trace rank plots 

(3) R-hat convergence measure 

(4) Number of effective samples 

(5) Divergent transitions
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library(cmdstanr) 
mHMC <- ulam( f , data=dat ) 

mHMC <- ulam( f , data=dat , chains=4 , cores=4 )

μi = α + βMMi + βAAi

Di ∼ Normal(μi, σ)

α ∼ Normal(0,0.2)
βM ∼ Normal(0,0.5)
βA ∼ Normal(0,0.5)
σ ∼ Exponential(1)

Need more than 1 chain to check 
convergence 

Convergence: Each chain explores the 
right distribution and every chain 
explores the same distribution
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Trace rank (Trank) plots
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R-hat
When chains converge: 

(1) Start and end of each chain explores 
same region 

(2) Independent chains explore same region 

R-hat is a ratio of variances:  
As total variance shrinks to average 
variance within chains, R-hat approaches 1 
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n_eff
Estimate of number of effective 
samples 

“How long would the chain be, if 
each sample was independent of 
the one before it?” 

When samples are autocorrelated, 
you have fewer effective samples
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Divergent transitions
Divergent transition: A kind of 
rejected proposal 

Simulation diverges from true path 

Many DTs: poor exploration & 
possible bias 

Will discuss again in later lecture



Bad chains
y <- c(-1,1) 
set.seed(11) 
m9.2 <- ulam( 
    alist( 
        y ~ dnorm( mu , sigma ), 
        mu <- alpha, 
        alpha ~ dnorm( 0 , 1000 ), 
        sigma ~ dexp( 0.0001 ) 
    ) , data=list(y=y) , chains=3 , cores=3 )
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Bad chains
y <- c(-1,1) 
set.seed(11) 
m9.2 <- ulam( 
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The Folk Theorem of  
Statistical Computing
“When you have computational 
problems, often there’s a problem 
with your model.”

Andrew Gelman 
Spider-Man of Bayesian 
data analysis



Bad chains
y <- c(-1,1) 
set.seed(11) 
m9.2 <- ulam( 
    alist( 
        y ~ dnorm( mu , sigma ), 
        mu <- alpha, 
        alpha ~ dnorm( 0 , 1000 ), 
        sigma ~ dexp( 0.0001 ) 
    ) , data=list(y=y) , chains=3 , 
cores=3 )

m9.3 <- ulam( 
    alist( 
        y ~ dnorm( mu , sigma ), 
        mu <- alpha, 
        alpha ~ dnorm( 1 , 10 ), 
        sigma ~ dexp( 1 ) 
    ) , data=list(y=y) , chains=3 , cores=3 )
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El Pueblo Unido
Desktop MCMC has been a revolution in 
scientific computing 

Custom scientific modeling 

High-dimension 

Propagate measurement error 

Do not “pipette by mouth” Sir David Spiegelhalter



Course Schedule
Week 1 Bayesian inference Chapters 1, 2, 3
Week 2 Linear models & Causal Inference Chapter 4
Week 3 Causes, Confounds & Colliders Chapters 5 & 6
Week 4 Overfitting / MCMC Chapters 7, 8, 9
Week 5 Generalized Linear Models Chapters 10, 11
Week 6 Integers & Other Monsters Chapters 11 & 12
Week 7 Multilevel models I Chapter 13
Week 8 Multilevel models II Chapter 14
Week 9 Measurement & Missingness Chapter 15
Week 10 Generalized Linear Madness Chapter 16

https://github.com/rmcelreath/stat_rethinking_2022




