Statistical Rethinking

06: Good \& Bad Controls

parent
education

P is a mediator

P is a collider

Can estimate total effect of G on C

Cannot estimate direct effect

$C_{i} \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right)$
$\mu_{i}=\alpha+\beta_{G} G_{i}+\beta_{P} P_{i}$

```
N <- 200 # num grandparent-parent-child triads
b_GP <- 1 # direct effect of G on P
b_GC <- 0 # direct effect of G on C
b_PC <- 1 # direct effect of P on C
b_U <- 2 #direct effect of U on P and C
set.seed(1)
U <- 2*rbern( N , 0.5 ) - 1
G<- rnorm( N )
P <- rnorm( N , b_GP*G + b_U*U )
C <- rnorm( N , b_PC*P + b_GC*G + b_U*U )
d <- data.frame( C=C , P=P , G=G , U=U )
m6.11 <- quap(
    alist(
        C ~ dnorm( mu , sigma ),
        mu <- a + b_PC*P + b_GC*G,
        a ~ dnorm( 0 , 1 ),
        c(b_PC,b_GC) ~ dnorm( 0 , 1 ),
        sigma ~ dexp( 1 )
    ), data=d )
```


Page 180

Stratify by parent centile (collider)

Two ways for parents to attain their education: from G or from U

Parents between 0th and 11th centiles good neighborhoods

From Theory to Estimate

Our job is to
(1) Clearly state assumptions
(2) Deduce implications
(3) Test implications

Avoid Being Clever At All Costs

Being clever is neither reliable nor transparent

Now what?

Given a causal model, can use logic to derive implications

Others can use same logic to verify/ challenge your work

The Fork
 $X \longleftarrow Z \longrightarrow Y$

X and Y associated unless stratify by Z

The Pipe $X \longrightarrow Z \longrightarrow Y$

The Collider
$X \rightarrow Z \longleftarrow Y$
X and Y associated unless stratify by Z
X and Y not associated unless stratify by Z

Forks

Forks

Pipes

Forks
Pipes
Colliders

[^0] global change in culture, Genome research 2015, DOI:10.1101/gr.186684.114

DAG Thinking

In an experiment, we cut causes of the treatment

We randomize (hopefully)
So how does causal inference without randomization ever work?

Is there a statistical procedure that mimics randomization?

With randomization

DAG Thinking

Is there a statistical procedure that mimics randomization?

$$
P(Y \mid \operatorname{do}(X))=P(Y \mid ?)
$$

do (X) means intervene on X

Can analyze causal model to find answer (if it exists)

With randomization

Example: Simple Confound

Example: Simple Confound

Non-causal path
$X<-U->Y$

Close the fork!
Condition on U

Example: Simple Confound

Non-causal path
$X<-U->Y$

Close the fork!
Condition on U

Example: Simple Confound

$$
P(Y \mid \operatorname{do}(X))=\sum_{U} P(Y \mid X, U) P(U)=\mathrm{E}_{U} P(Y \mid X, U)
$$

"The distribution of Y, stratified by X and U, averaged over the distribution of U."

$$
\begin{gathered}
P(Y \mid \operatorname{do}(X))=\sum_{U} P(Y \mid X, U) P(U)=\mathrm{E}_{U} P(Y \mid X, U) \\
\text { "The distribution of } Y \text {, stratified by } X \text { and } U, \\
\text { averaged over the distribution of } U . \text { " }
\end{gathered}
$$

The causal effect of X on Y is not (in general) the coefficient relating X to Y

It is the distribution of Y when we change X, averaged over the distributions of the
 control variables (here U)

Marginal Effects Example

Marginal Effects Example

cheetahs present

cheetahs absent

Causal effect of baboons depends upon distribution of cheetahs

do-calculus

For DAGs, rules for finding $P(Y \mid \operatorname{do}(X))$ known as do-calculus

do-calculus says what is possible to say before picking functions

Additional assumptions yield additional implications

DO-CALCULUS AT WORK

Figure 7.4. Derivation of the front-door adjustment formula from the rules of do-calculus.

do-calculus

do-calculus is worst case: additional assumptions often allow stronger inference
do-calculus is best case:
if inference possible by docalculus, does not depend on special assumptions

Backdoor Criterion

Very useful implication of do-calculus is the Backdoor Criterion

Backdoor Criterion is a shortcut to applying rules of do-calculus

Also inspires strategies for research design that yield valid estimates

Backdoor Criterion

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield $P(Y \mid \operatorname{do}(X))$

Backdoor Criterion

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield $P(Y \mid \operatorname{do}(X))$
(1) Identify all paths connection the treatment (X) to the outcome (Y)

Backdoor Criterion

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield $P(Y \mid \operatorname{do}(X))$
(1) Identify all paths connection the treatment (X) to the outcome (Y)
(2) Paths with arrows entering X are backdoor paths (non-causal paths)

Backdoor Criterion

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield $P(Y \mid \operatorname{do}(X))$
(1) Identify all paths connection the treatment (X) to the outcome (Y)
(2) Paths with arrows entering X are backdoor paths (non-causal paths)
(3) Find adjustment set that closes/blocks all
 backdoor paths
(1) Identify all paths connection the treatment (X) to the outcome (Y)

(2) Paths with arrows entering X are backdoor paths (non-causal paths)

(3) Find a set of control variables that close/block all backdoor paths

Block the pipe: $X \Perp U \mid Z$

(3) Find a set of control variables that close/block all backdoor paths

$$
\begin{aligned}
& \text { Block the pipe: } X \Perp U \mid Z \\
& P(Y \mid \operatorname{do}(X))=\sum_{U} P(Y \mid X, Z) P(Z) \\
& Y_{i} \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right) \\
& \mu_{i}=\alpha+\beta_{X} X_{i}+\beta_{Z} Z_{i}
\end{aligned}
$$

List all the paths connecting \mathbf{X} and \mathbf{Y}. Which need to be closed to estimate effect of \mathbf{X} on \mathbf{Y} ?

List all the paths connecting \mathbf{X} and \mathbf{Y}. Which need to be closed to estimate effect of \mathbf{X} on \mathbf{Y} ?

Adjustment set: nothing!

List all the paths connecting \mathbf{X} and \mathbf{Y}. Which need to be closed to estimate effect of \mathbf{X} on \mathbf{Y} ?

$P(Y \mid \operatorname{do}(X))$

$P(Y \mid \operatorname{do}(X))$

Adjustment set: C, Z, and either A or B
(B is better choice)

www.dagitty.net

Model | Examples | How to ... | Layout | Help

© Causal effect identification
Adjustment (total effect) Minimal sufficient adjustment sets for estimating the total effect of X on Y :

- A, C, Z
- B, C, Z

Testable implications
The model implies the following conditional independences:

- $\mathrm{X} \perp \mathrm{BI} \mathrm{A}, \mathrm{Z}$
- $Y \perp A \mid B, C, X, Z$
- $A \perp B$
- $A \perp C$
- $\mathrm{B} \perp \mathrm{C}$
- $\mathrm{Z} \perp \mathrm{C}$

Backdoor Criterion

Backdoor Criterion: Rule to find adjustment set to yield $P(Y \mid \operatorname{do}(X))$

Backdoor Criterion

Backdoor Criterion: Rule to find adjustment set to yield $P(Y \mid \operatorname{do}(X))$

Beware non-causal paths that you open while closing other paths!

Backdoor Criterion

Backdoor Criterion: Rule to find adjustment set to yield $P(Y \mid \operatorname{do}(X))$

Beware non-causal paths that you open while closing other paths!

More than backdoors:

Backdoor Criterion

Backdoor Criterion: Rule to find adjustment set to yield $P(Y \mid \operatorname{do}(X))$

Beware non-causal paths that you open while closing other paths!

More than backdoors:
Also solutions with simultaneous equations (instrumental variables e.g.)

Backdoor Criterion

Backdoor Criterion: Rule to find adjustment set to yield $P(Y \mid \operatorname{do}(X))$

Beware non-causal paths that you open while closing other paths!

More than backdoors:
Also solutions with simultaneous equations (instrumental variables e.g.)

Full Luxury Bayes: use all variables, but in separate sub-models instead of single regression

http://www.blackswanman.com/

Good \& Bad Controls

"Control" variable: Variable introduced to an
CONTROL ALL THE THINGS

Anything in the spreadsheet YOLO!
Any variables not highly collinear
Any pre-treatment measurement (baseline)

$X \longrightarrow Y$

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls
(1) List the paths

(1) List the paths

$X \rightarrow Y$

(1) List the paths

$$
\begin{aligned}
& X \rightarrow Y \\
& X \leftarrow u \rightarrow Z \leftarrow v \rightarrow Y
\end{aligned}
$$

(1) List the paths (2) Find backdoors

$$
\begin{aligned}
& X \rightarrow Y \\
& \text { frontdoor \& open } \\
& X \leftarrow u \rightarrow Z \leftarrow v \rightarrow Y \\
& \text { backdoor \& closed }
\end{aligned}
$$

(1) List the paths (2) Find backdoors

$$
\begin{aligned}
& X \rightarrow Y \\
& \text { frontdoor \& open } \\
& X \leftarrow u \rightarrow Z \leftarrow v \rightarrow Y \\
& \text { backdoor \& closed }
\end{aligned}
$$

(1) List the paths
 (2) Find backdoors
 (3) Close backdoors

$$
\begin{aligned}
& X \rightarrow Y \\
& \quad \text { frontdoor \& open } \\
& X \leftarrow u \rightarrow Z \leftarrow v \rightarrow Y \\
& \text { backdoor \& closed }
\end{aligned}
$$

What happens if you stratify by Z ?

Opens the backdoor path
Z could be a pre-treatment variable

Not safe to always control pretreatment measurements

Hobbies Hobbies
person 1 person 2

Health
person 1

Health
person 2

$X \rightarrow Z \rightarrow Y$

$$
X \rightarrow Z \leftarrow u \rightarrow Y
$$

No backdoor, no need to control for Z

```
f <- function(n=100,bXZ=1,bZY=1) {
    X <- rnorm(n)
    u <- rnorm(n)
    Z <- rnorm(n, bXZ*X + u)
    Y <- rnorm(n, bZY*Z + u )
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef( lm(Y ~ X + Z) )['X']
    return( c(bX,bXZ) )
}
sim <- mcreplicate( le4 , f() , mc.cores=8 )
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


$X \underset{1}{\longrightarrow} Z \xrightarrow[1]{\text { (}} Y$

```
f <- function(n=100,bXZ=1,bZY=1) {
    X <- rnorm(n)
    u<- rnorm(n)
    Z <- rnorm(n, bXZ*X + u)
    Y<- rnorm(n, bZY*Z + u )
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef( lm(Y ~ X + Z) )['X']
    return( c(bX,bXZ) )
```

\}
sim <- mcreplicate(1e4 , f() , mc.cores=8)
dens(sim[1,] , lwd=3 , xlab="posterior mean")
dens(sim[2,] , lwd=3 , col=2 , add=TRUE)

Change bZY to zero

```
f <- function(n=100,bXZ=1,bZY=1) {
    X <- rnorm(n)
    u <- rnorm(n)
    Z <- rnorm(n, bXZ*X + u)
    Y <- rnorm(n, bZY*Z + u )
    bX <- coef( lm(Y ~ X) ) ['X']
    bXZ <- coef( lm(Y ~ X + Z) )['X']
    return( c(bX,bXZ) )
}
sim <- mcreplicate( 1e4 , f(bZY=0) , mc.cores=8 )
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


$X \rightarrow Z \rightarrow Y$ $X \rightarrow Z \leftarrow u \rightarrow Y$
 No backdoor, no need
 to control for Z

Controlling for Z biases treatment estimate X

Controlling for Z opens biasing path through u

Can estimate effect of X; Cannot estimate mediation effect Z

Post-treatment bias is common

Table 1 Posttreatment Conditioning in Experimental Studies

Category	Prevalence
Engages in posttreatment conditioning	21.3%
Controls for/interacts with a	
posttreatment variable	14.7%
Drops cases based on posttreatment	
\quad criteria	10.7%
\quad Both types of posttreatment conditioning	
\quad present	
No conditioning on posttreatment variables	52.0%
Insufficient information to code	1.3%

Note: The sample consists of 2012-14 articles in the American Political Science Review, the American Journal of Political Science, and the Journal of Politics including a survey, field, laboratory, or lab-in-the-field experiment $(\mathrm{n}=75)$.

Montgomery et al 2018 How Conditioning on Posttreatment Variables Can Ruin Your Experiment

Do not touch the collider!

Colliders not always so obvious

"Case-control bias"

"Case-control bias"

Education
Occupation

"Case-control bias"

```
f <- function(n=100,bXY=1,bYZ=1) {
    X <- rnorm(n)
    Y <- rnorm(n, bXY*X )
    Z <- rnorm(n, bYZ*Y )
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef( lm(Y ~ X + Z) )['X']
    return( c(bX,bXZ) )
}
sim <- mcreplicate( 1e4 , f() , mc.cores=8 )
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


"Precision parasite"
No backdoors
But still not good to
 condition on Z

"Precision parasite"

```
f <- function(n=100,bZX=1,bXY=1) {
    Z <- rnorm(n)
    X<- rnorm(n, bZX*Z )
    Y <- rnorm(n, bXY*X )
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef( lm(Y ~ X + Z) )['X']
    return( c(bX,bXZ) )
}
sim <- mcreplicate( 1e4 , f(n=50) , mc.cores=8 )
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


"Bias amplification"
\boldsymbol{X} and \boldsymbol{Y} confounded by \boldsymbol{u}
Something truly awful happens
 when we add Z

```
f <- function(n=100,bZX=1,bXY=1) {
    Z <- rnorm(n)
    u <- rnorm(n)
    X <- rnorm(n, bZX*Z + u )
    Y <- rnorm(n, bXY*X + u )
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef( lm(Y ~ X + Z) )['X']
    return( c(bX,bXZ) )
}
sim <- mcreplicate( 1e4 , f(bXY=0) , mc.cores=8 )
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


Z

WHY?

Covariation \boldsymbol{X} \& \boldsymbol{Y} requires variation in their causes

Within each level of \boldsymbol{Z}, less variation in \boldsymbol{X}

Confound \boldsymbol{u} relatively more important within each \boldsymbol{Z}

Z


```
n <- 1000
    Z <- rbern(n)
    u <- rnorm(n)
    X <- rnorm(n, 7*Z + u )
    Y <- rnorm(n, 0*X + u )
```


Good \& Bad Controls

"Control" variable: Variable introduced to an analysis so that a causal estimate is possible

Heuristics fail — adding control
variables can be worse than omitting
Make assumptions explicit

Table 2 Fallacy

Table 2--Estimated Probit Models For the Use of a Screen

Not all coefficients are causal effects

Statistical model designed to identify $\boldsymbol{X} \rightarrow \boldsymbol{Y}$ will not also identify effects of control variables

Table 2 is dangerous

	Preliminaries blind		Finals blind
	(1)	(2)	(3)
(Proportion female) $_{t-1}$	2.744	3.120	0.490
	(3.265)	(3.271)	(1.163)
	[0.006]	[0.004]	[0.011]
(Proportion of orchestra personnel with <6 years tenure) t_{-1}	-26.46	-28.13	-9.467
	(7.314)	(8.459)	(2.787)
	[-0.058]	[-0.039]	[-0.207]
"Big Five" orchestra		0.367	
		(0.452)	
		[0.001]	
pseudo R^{2}	0.178	0.193	0.050
Number of observations	294	294	434

Westreich \& Greenland 2013 The Table 2 Fallacy

Use Backdoor Criterion

Use Backdoor Criterion

$$
X \longrightarrow Y
$$

Use Backdoor Criterion

$$
X \longrightarrow Y
$$

Use Backdoor Criterion

$$
X \rightarrow Y
$$

Use Backdoor Criterion

$$
X \rightarrow Y
$$

Use Backdoor Criterion

$$
X \rightarrow Y
$$

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right) \\
\mu_{i} & =\alpha+\beta_{X} X_{i}+\beta_{S} S_{i}+\beta_{A} A_{i}
\end{aligned}
$$

Unconditional

Confounded by A and S

Unconditional

Confounded by A and S

Conditional on A and S

Coefficient for X : Effect of X on Y (still must marginalize!)

Unconditional

Effect of S
confounded by A

Unconditional

Effect of S
confounded by A

Conditional on A and X

Coefficient for S :
Direct effect of S on Y

Unconditional

Total causal effect
of A on Y flows through all paths

Unconditional

Total causal effect of A on Y flows through all paths

Conditional on X and S

Coefficient for A :
Direct effect of A on Y

Table 2 Fallacy

Not all coefficients created equal
So do not present them as equal
Options:
Do not present control coefficients
Give explicit interpretation of each

No causal model, no interpretation

Imagine Confounding

Often we cannot credibly adjust for all confounding

Do not give up!
Biased estimate can be better than no estimate

Sensitivity analysis: draw the implications of what you don't know

Find natural experiment or design one

Course Schedule

Week 1	Bayesian inference	Chapters 1, 2, 3
Week 2	Linear models \& Causal Inference	Chapter 4
Week 3	Causes, Confounds \& Colliders	Chapters 5 \& 6
Week 4	Overfitting / MCMC	Chapters 7, 8, 9
Week 5	Generalized Linear Models	Chapters 10, 11
Week 6	Integers \& Other Monsters	Chapters 11 \& 12
Week 7	Multilevel models I	Chapter 13
Week 8	Multilevel models II	Chapter 14
Week 9	Measurement \& Missingness	Chapter 15
Week 10	Generalized Linear Madness	Chapter 16

https://github.com/rmcelreath/stat_rethinking_2022

[^0]: Karmin, M., (+100) et al., A recent bottleneck of Y chromosome diversity coincides with a

