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G P
U

C

Can estimate total 
effect of G on C

Cannot estimate 
direct effect

G P
U

C
Ci ∼ Normal(μi, σ)
μi = α + βGGi

Ci ∼ Normal(μi, σ)
μi = α + βGGi + βPPi



N <- 200  # num grandparent-parent-child triads 
b_GP <- 1 # direct effect of G on P 
b_GC <- 0 # direct effect of G on C 
b_PC <- 1 # direct effect of P on C 
b_U <- 2 #direct effect of U on P and C 

set.seed(1) 
U <- 2*rbern( N , 0.5 ) - 1 
G <- rnorm( N ) 
P <- rnorm( N , b_GP*G + b_U*U ) 
C <- rnorm( N , b_PC*P + b_GC*G + b_U*U ) 
d <- data.frame( C=C , P=P , G=G , U=U ) 

m6.11 <- quap( 
    alist( 
        C ~ dnorm( mu , sigma ), 
        mu <- a + b_PC*P + b_GC*G, 
        a ~ dnorm( 0 , 1 ), 
        c(b_PC,b_GC) ~ dnorm( 0 , 1 ), 
        sigma ~ dexp( 1 ) 
    ), data=d )
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Stratify by parent centile 
(collider) 

Two ways for parents to 
attain their education: from 
G or from U
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From Theory to Estimate

Our job is to 

(1) Clearly state assumptions 

(2) Deduce implications  

(3) Test implications



Avoid Being Clever At All Costs
Being clever is neither reliable nor 
transparent 

Now what? 

Given a causal model, can use logic to 
derive implications 

Others can use same logic to verify/
challenge your work



X Z Y

The Pipe

X Z Y

The Fork

X Z Y

The Collider

X and Y associated 
unless stratify by Z

X and Y associated 
unless stratify by Z

X and Y not associated 
unless stratify by Z
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of farming in the Near East, East Asia, and South Asia than in
Europe (Fuller 2003; Bellwood 2005). A change in social structures
that increased male variance in offspring number may explain the
results, especially if male reproductive success was at least partially
culturally inherited (Heyer et al. 2005).

Changes in population structure can also drastically affect the
Ne. In simplemodels of population structure, with no competition
among demes, structure will always increase the Ne. However,
structure combined with an unbalanced sampling strategy can
lead BSP to infer false signals of population decline under a cons-
tant population size model (Heller et al. 2013). An increase in
male migration rate might reduce the male Ne but is unlikely to
cause a brief drastic reduction in Ne as observed in our empirical
data. Similarly, simple models of increased or decreased popula-
tion structure are not sufficient to explain the observed patterns
(Supplemental Information 5; Supplemental Fig. S7). However,
in models with competition among demes, an increased level
of variance in expected offspring number among demes can dras-
tically decrease theNe (Whitlock and Barton 1997). The effect may

be male-specific, for example, if competition is through a male-
driven conquest. A historical example might be the Mongol
expansions (Zerjal et al. 2003). Innovations in transportation tech-
nology (e.g., the invention of the wheel, horse and camel domes-
tication, and open water sailing) might have contributed to this
pattern. Likely, the effect we observe is due to a combination of
culturally driven increased male variance in offspring number
within demes and an increased male-specific variance among
demes, perhaps enhanced by increased sex-biased migration pat-
terns (Destro-Bisol et al. 2004; Skoglund et al. 2014) andmale-spe-
cific cultural inheritance of fitness.

We note that any nonselective explanation for the reduction
in Ne would also predict a reduction of the Ne at autosomal loci in
this short time interval (Supplemental Fig. S6). In fact, when the
sex difference in Ne is large, the autosomal effective population
size should be dominated by the sex with the lowest effective pop-
ulation size. However,most existingmethods are underpowered to
detectNe changeswithin the past few thousand years (i.e., relative-
ly short-lived demographic events) from recombining genome-
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DAG Thinking
In an experiment, we cut causes of 
the treatment 

We randomize (hopefully) 

So how does causal inference 
without randomization ever work? 

Is there a statistical procedure that 
mimics randomization?

X Y

U
Without randomization

X Y

U
With randomization



DAG Thinking
Is there a statistical procedure 
that mimics randomization? X Y

U
Without randomization

X Y

U
With randomization

P(Y |do(X)) = P(Y |?)

do(X) means intervene on X 
 
Can analyze causal model to 
find answer (if it exists)



Example: Simple Confound

X Y

U



Example: Simple Confound
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U Non-causal path 
X <– U –> Y 
 
Close the fork! 
Condition on U
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Example: Simple Confound

X Y

U Non-causal path 
X <– U –> Y 
 
Close the fork! 
Condition on U

P(Y |do(X)) = ∑
U

P(Y |X, U)P(U) = EUP(Y |X, U)

“The distribution of Y, stratified by X and U, 
averaged over the distribution of U.”



The causal effect of X on Y is not (in 
general) the coefficient relating X to Y 

It is the distribution of Y when we change 
X, averaged over the distributions of the 
control variables (here U)

P(Y |do(X)) = ∑
U

P(Y |X, U)P(U) = EUP(Y |X, U)

“The distribution of Y, stratified by X and U, 
averaged over the distribution of U.”

X Y

U



Marginal Effects Example

B G

Ccheetahs

baboons gazelle



Marginal Effects Example

B G

C
cheetahs present

B G

C
cheetahs absent

Causal effect of baboons depends upon distribution of cheetahs



do-calculus
For DAGs, rules for finding  
P(Y|do(X)) known as do-calculus 

do-calculus says what is possible 
to say before picking functions 

Additional assumptions yield 
additional implications



do-calculus
do-calculus is worst case: 
additional assumptions often 
allow stronger inference 

do-calculus is best case:  
if inference possible by do-
calculus, does not depend on 
special assumptions

Judea Pearl, father of 
do-calculus, in 1966



Backdoor Criterion
Very useful implication of do-calculus is 
the Backdoor Criterion 

Backdoor Criterion is a shortcut to 
applying rules of do-calculus 

Also inspires strategies for research 
design that yield valid estimates
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Backdoor Criterion: Rule to find a set of variables 
to stratify (condition) by to yield P(Y|do(X))
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Backdoor Criterion
Backdoor Criterion: Rule to find a set of variables 
to stratify (condition) by to yield P(Y|do(X))

(1) Identify all paths connection the treatment 
(X) to the outcome (Y)

(2) Paths with arrows entering X are backdoor 
paths (non-causal paths)

(3) Find adjustment set that closes/blocks all 
backdoor paths



(1) Identify all paths connection the 
treatment (X) to the outcome (Y)



(2) Paths with arrows entering X are 
backdoor paths (non-causal paths)



(3) Find a set of control variables that 
close/block all backdoor paths

Block the pipe: X ⫫ U | Z



(3) Find a set of control variables that 
close/block all backdoor paths

P(Y |do(X)) = ∑
U

P(Y |X, Z)P(Z)

μi = α + βXXi + βZZi

Yi ∼ Normal(μi, σ)

Block the pipe: X ⫫ U | Z



X Y

List all the paths connecting X and Y. 
Which need to be closed to estimate 
effect of X on Y?

C

Z



X Y

List all the paths connecting X and Y. 
Which need to be closed to estimate 
effect of X on Y?

C

Z
X Y

C

Z

X Y

C

Z



X Y

C

Z
X Y

C

Z

X Y

C

Z

Adjustment set: nothing!



X Y

Z B

List all the paths connecting X and Y. 
Which need to be closed to estimate 
effect of X on Y?

A

C
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Z BA
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P(Y|do(X))

X Y

Z BA

C



X Y

Z BA

C
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C

X Y
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X Y

Z BA

C

X Y

Z BA

C
X Y

Z BA

C

Adjustment set: C, Z, and either A or B

(B is better choice)



www.dagitty.net
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yield P(Y|do(X))
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Beware non-causal paths that you open while closing 
other paths!
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More than backdoors:

Also solutions with simultaneous equations 
(instrumental variables e.g.)



Backdoor Criterion
Backdoor Criterion: Rule to find adjustment set to 
yield P(Y|do(X))

Beware non-causal paths that you open while closing 
other paths!

More than backdoors:

Also solutions with simultaneous equations 
(instrumental variables e.g.)

Full Luxury Bayes: use all variables, but in separate 
sub-models instead of single regression



PAUSE



http://www.blackswanman.com/



Good & Bad Controls
“Control” variable: Variable introduced to an 
analysis so that a causal estimate is possible 

Common wrong heuristics for choosing 
control variables 

   Anything in the spreadsheet YOLO! 

   Any variables not highly collinear 

   Any pre-treatment measurement (baseline)

CONTROL 
ALL THE 
THINGS



X

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls 

Y



X Y

u v
Z

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls 

unobserved
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Z

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls 

Health 
person 1

Health 
person 2

Hobbies 
person 1

Hobbies 
person 2Friends
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(1) List the paths
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(1) List the paths

X → Y
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Z

(1) List the paths

X → Y

X ← u → Z ← v → Y
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frontdoor & open

backdoor & closed

(2) Find backdoors
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X Y

u v
Z

(1) List the paths

X → Y

X ← u → Z ← v → Y

frontdoor & open

backdoor & closed

(2) Find backdoors (3) Close backdoors



X Y

u v
Z

What happens if you stratify by 
Z? 

Opens the backdoor path 

Z could be a pre-treatment 
variable 

Not safe to always control pre-
treatment measurements

Health 
person 1

Health 
person 2

Hobbies 
person 1

Hobbies 
person 2

Friends



X YZ
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X YZ

u

Win 
lottery

LifespanHappiness

Contextual 
confounds



X YZ

u
X → Z → Y

X → Z ← u → Y

No backdoor, no need 
to control for Z



X YZ

u
f <- function(n=100,bXZ=1,bZY=1) { 
    X <- rnorm(n) 
    u <- rnorm(n) 
    Z <- rnorm(n, bXZ*X + u) 
    Y <- rnorm(n, bZY*Z + u ) 
    bX <- coef( lm(Y ~ X) )['X'] 
    bXZ <- coef( lm(Y ~ X + Z) )['X'] 
    return( c(bX,bXZ) ) 
} 

sim <- mcreplicate( 1e4 , f() , mc.cores=8 ) 

dens( sim[1,] , lwd=3 , xlab="posterior mean" ) 
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )

1 1

1 1



X YZ

u
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f <- function(n=100,bXZ=1,bZY=1) { 
    X <- rnorm(n) 
    u <- rnorm(n) 
    Z <- rnorm(n, bXZ*X + u) 
    Y <- rnorm(n, bZY*Z + u ) 
    bX <- coef( lm(Y ~ X) )['X'] 
    bXZ <- coef( lm(Y ~ X + Z) )['X'] 
    return( c(bX,bXZ) ) 
} 

sim <- mcreplicate( 1e4 , f() , mc.cores=8 ) 

dens( sim[1,] , lwd=3 , xlab="posterior mean" ) 
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )

Y ~ X 
correct

Y ~ X + Z 
wrong

1 1

1 1



X YZ

u

Y ~ X 
correct

Y ~ X + Z 
wrong

Change bZY to zero 
f <- function(n=100,bXZ=1,bZY=1) { 
    X <- rnorm(n) 
    u <- rnorm(n) 
    Z <- rnorm(n, bXZ*X + u) 
    Y <- rnorm(n, bZY*Z + u ) 
    bX <- coef( lm(Y ~ X) )['X'] 
    bXZ <- coef( lm(Y ~ X + Z) )['X'] 
    return( c(bX,bXZ) ) 
} 

sim <- mcreplicate( 1e4 , f(bZY=0) , mc.cores=8 ) 

dens( sim[1,] , lwd=3 , xlab="posterior mean" ) 
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )

-1.0 -0.5 0.0 0.5

0.
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1.
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posterior mean
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1 0

1 1



X YZ

u

X → Z → Y
X → Z ← u → Y

No backdoor, no need 
to control for Z

Controlling for Z biases 
treatment estimate X 

Controlling for Z opens biasing 
path through u 

Can estimate effect of X; Cannot 
estimate mediation effect Z

Win 
lottery

LifespanHappiness



Post-treatment bias is commonSTOP CONDITIONING ON POSTTREATMENT VARIABLES IN EXPERIMENTS 761

unlikely to hold in real-world settings. In short, condi-
tioning on posttreatment variables can ruin experiments;
we should not do it.

Though the dangers of posttreatment bias have long
been recognized in the fields of statistics, econometrics,
and political methodology (e.g., Acharya, Blackwell, and
Sen 2016; Elwert and Winship 2014; King and Zeng 2006;
Rosenbaum 1984; Wooldridge 2005), there is still signif-
icant confusion in the wider discipline about its sources
and consequences. In this article, we therefore seek to
provide the most comprehensive and accessible account
to date of the sources, magnitude, and frequency of post-
treatment bias in experimental political science research.
We first identify common practices that lead to posttreat-
ment conditioning and document their prevalence in arti-
cles published in the field’s top journals. We then provide
analytical results that explain how posttreatment bias con-
taminates experimental analyses and demonstrate how it
can distort treatment effect estimates using data from
two real-world studies. We conclude by offering guidance
on how to address practical challenges in experimental
research without inducing posttreatment bias.

Don’t We Already Know This?

We first address the notion that the dangers of posttreat-
ment bias are already well known. After all, published
research in political science identified posttreatment bias
(in passing) as problematic over a decade ago (King and
Zeng 2006, 147–48). More recent work has amplified these
points in the context of observational research (Acharya,
Blackwell, and Sen 2016; Blackwell 2013). Some readers
may wonder whether this exercise is needed given the in-
creasingly widespread understanding of causal analysis in
the discipline. In this section, we show that the dangers of
posttreatment conditioning are either not understood or
are being ignored—our review of the published literature
suggests that it is widespread.

Of course, conditioning on posttreatment variables
is not a practice that is exclusive to experimental research.
Indeed, we believe the prevalence of and bias from post-
treatment conditioning in observational research is likely
greater (perhaps much greater). Acharya, Blackwell, and
Sen (2016), for instance, show that as many as four out of
five observational studies in top journals may condition
on posttreatment variables. We speculate that posttreat-
ment bias may be even more common in less prestigious
outlets or in books.

We focus on experiments because, first, it is reason-
able to expect experimentalists to be especially careful to

TABLE 1 Posttreatment Conditioning
in Experimental Studies

Category Prevalence

Engages in posttreatment conditioning 46.7%
Controls for/interacts with a

posttreatment variable
21.3%

Drops cases based on posttreatment
criteria

14.7%

Both types of posttreatment conditioning
present

10.7%

No conditioning on posttreatment variables 52.0%
Insufficient information to code 1.3%

Note: The sample consists of 2012–14 articles in the American Po-
litical Science Review, the American Journal of Political Science, and
the Journal of Politics including a survey, field, laboratory, or lab-
in-the-field experiment (n = 75).

avoid posttreatment bias. In many cases, the usefulness
of an experiment rests on its strong claim to internal
validity, not the participants (often unrepresentative) or
the manipulation (often artificial). And unlike observa-
tional studies, the nature and timing of the treatment in
experiments are typically unambiguous, making it easy
for scholars to avoid conditioning on posttreatment vari-
ables. Second, for pedagogical purposes, explaining post-
treatment bias in experiments allows for greater exposi-
tional clarity, reduces ambiguity about whether variables
are measured posttreatment in the examples we discuss,
and allows us to generate an unbiased estimate for pur-
poses of comparison in our applications.

To demonstrate the prevalence of posttreatment con-
ditioning in contemporary experimental research in po-
litical science, we analyzed all articles published in the
American Political Science Review (APSR), the American
Journal of Political Science (AJPS), and the Journal of Pol-
itics (JOP) that included one or more survey, field, labo-
ratory, or lab-in-the-field experiments from 2012 to 2014
(n = 75). We coded each article for whether the authors
subsetted the data based on potentially posttreatment cri-
teria; controlled for or interacted their treatment variable
with any variables that could plausibly be affected by the
treatment (e.g., not race or gender when these were ir-
relevant to the study); or conditioned on variables that
the original authors themselves identified as experimental
outcomes.1

Table 1 presents a summary of our results. Overall, we
find that 46.7% of the experimental studies published in

1Additional details on these coding procedures as well as a listing of
articles coded as having some form of posttreatment conditioning
are provided in the supporting information.

Montgomery et al 2018 How Conditioning on Posttreatment Variables Can Ruin Your Experiment  

Regression with confounds

Regression with post-
treatment variables
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Do not touch the collider!



X Y

Z u

Colliders not always so obvious
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family
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“Case-control bias”



X Y

Z

“Case-control bias”

Education Occupation

Income



X Y Z
“Case-control bias”

f <- function(n=100,bXY=1,bYZ=1) { 
    X <- rnorm(n) 
    Y <- rnorm(n, bXY*X ) 
    Z <- rnorm(n, bYZ*Y ) 
    bX <- coef( lm(Y ~ X) )['X'] 
    bXZ <- coef( lm(Y ~ X + Z) )['X'] 
    return( c(bX,bXZ) ) 
} 

sim <- mcreplicate( 1e4 , f() , mc.cores=8 ) 

dens( sim[1,] , lwd=3 , xlab="posterior mean" ) 
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
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correct

Y ~ X + Z 
wrong

1 1



X Y

Z“Precision parasite” 

No backdoors 

But still not good to 
condition on Z



X YZ
“Precision parasite”

f <- function(n=100,bZX=1,bXY=1) { 
    Z <- rnorm(n) 
    X <- rnorm(n, bZX*Z ) 
    Y <- rnorm(n, bXY*X ) 
    bX <- coef( lm(Y ~ X) )['X'] 
    bXZ <- coef( lm(Y ~ X + Z) )['X'] 
    return( c(bX,bXZ) ) 
} 

sim <- mcreplicate( 1e4 , f(n=50) , mc.cores=8 ) 

dens( sim[1,] , lwd=3 , xlab="posterior mean" ) 
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
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Y ~ X + Z 
wrong



X Y

Z
u

“Bias amplification” 

X and Y confounded by u 

Something truly awful happens 
when we add Z



f <- function(n=100,bZX=1,bXY=1) { 
    Z <- rnorm(n) 
    u <- rnorm(n) 
    X <- rnorm(n, bZX*Z + u ) 
    Y <- rnorm(n, bXY*X + u ) 
    bX <- coef( lm(Y ~ X) )['X'] 
    bXZ <- coef( lm(Y ~ X + Z) )['X'] 
    return( c(bX,bXZ) ) 
} 

sim <- mcreplicate( 1e4 , f(bXY=0) , mc.cores=8 ) 

dens( sim[1,] , lwd=3 , xlab="posterior mean" ) 
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )

X Y

Z
u

-0.5 0.0 0.5 1.0

0
1

2
3

4
5

posterior mean

D
en
si
ty

Y ~ X 
biased

Y ~ X + Z 
more bias

true value 
is zero
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Y ~ X 
biased

Y ~ X + Z 
more bias

true value 
is zero

WHY? 

Covariation X & Y requires 
variation in their causes 

Within each level of Z, less 
variation in X 

Confound u relatively more 
important within each Z
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-2
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X
Y

X Y

Z
u

0

+ + +

n <- 1000 
Z <- rbern(n) 
u <- rnorm(n) 
X <- rnorm(n, 7*Z + u ) 
Y <- rnorm(n, 0*X + u )

Z = 0 Z = 1



Good & Bad Controls

“Control” variable: Variable 
introduced to an analysis so that a 
causal estimate is possible 

Heuristics fail — adding control 
variables can be worse than omitting 

Make assumptions explicit

MODEL 
ALL THE 
THINGS



PAUSE



Table 2 Fallacy
Not all coefficients are causal 
effects 

Statistical model designed to 
identify X –> Y will not also 
identify effects of control 
variables 

Table 2 is dangerous

Westreich & Greenland 2013 The Table 2 Fallacy

724 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2000 

TABLE 2-ESTIMATED PROBIT MODELS 
FOR THE USE OF A SCREEN 

Finals 
Preliminaries blind blind 

(1) (2) (3) 

(Proportion female),_ 2.744 3.120 0.490 
(3.265) (3.271) (1.163) 
[0.006] [0.004] [0.011] 

(Proportion of orchestra -26.46 -28.13 -9.467 
personnel with <6 (7.314) (8.459) (2.787) 
years tenure),- 1 [-0.058] [-0.039] [-0.207] 

"Big Five" orchestra 0.367 
(0.452) 
[0.001] 

pseudo R2 0.178 0.193 0.050 
Number of observations 294 294 434 

Notes: The dependent variable is 1 if the orchestra adopts a 
screen, 0 otherwise. Huber standard errors (with orchestra 
random effects) are in parentheses. All specifications in- 
clude a constant. Changes in probabilities are in brackets. 
"Proportion female" refers to the entire orchestra. "Tenure" 
refers to years of employment in the current orchestra. "Big 
Five" includes Boston, Chicago, Cleveland, New York Phil- 
harmonic, and Philadelphia. The data begin in 1947 and an 
orchestra exits the exercise once it adopts the screen. The 
unit of observation is an orchestra-year. 
Source: Eleven-orchestra roster sample. See text. 

I[I. The Role of Blind Auditions on the 
Audition and Hiring Process 

A. Data and Methods 

Audition Records.-We use the actual audi- 
tion records of eight major symphony orchestras 
obtained from orchestra personnel managers and 
the orchestra archives. The records are highly con- 
fidential and occasionally contain remarks (in- 
cluding those of the conductor) about musicians 
currently with the orchestra. To preserve the full 
confidentiality of the records, we have not re- 
vealed the names of the orchestras in our sample. 

Although availability differs, taken together 
we obtained information on auditions dating 
from the late 1950's through 1995. Typically, 
the records are lists of the names of individuals 

who attended the auditions, with notation near 
the names of those advanced to the next round. 
For the preliminary round, this would indicate 
advancement to either the semifinal or final 
round. Another list would contain the names of 
the semifinalists or finalists with an indication 
of who won the audition.29 From these records, 
we recorded the instrument and position (e.g., 
section, principal, substitute) for which the au- 
dition was held. We also know whether the 
individual had an "automatic" placement in a 
semifinal or final round. Automatic placement 
occurs when a musician is already known to be 
above some quality cutoff and is invited to 
compete in a semifinal or final round.30 We also 
recorded whether the individual was advanced 
to the next round of the current audition. 

We rely on the first name of the musicians to 
determine sex. For most names establishing sex 
was straightforward.31 Sexing the Japanese and 
Korean names was equally straightforward, at 
least for our Japanese and Korean consultants. 
For more difficult cases, we checked the names 
in three baby books (Connie Lockhard Ellefson, 
1990; Alfred J. Kolatch, 1990; Bruce Lansky, 
1995). If the name was listed as male- or 
female-only, we considered the sex known. The 
gender-neutral names (e.g., Chris, Leslie, and 
Pat) and some Chinese names (for which sex is 
indeterminate in the absence of Chinese char- 
acters) remained ambiguous. Using these pro- 
cedures, we were able to determine the sex of 
96 percent of our audition sample.32 We later 
assess the impact that sex misclassification may 
have on our results. 

In constructing our analysis sample, we ex- 
clude incomplete auditions, those in which there 
were no women (or only women) competing, 
rounds from which no one was advanced, and 
the second final round, if one exists, for which 

conductor from 1949 to 1962. Our inability to explain the 
timing of screen adoption may result from our lack of 
intimate knowledge of the musical world, although it is also 
difficult to explain blind refereeing policy among econom- 
ics journals (see the list in Blank, 1991). 

29 In rare cases, we have additional information on the 
finalists, such as resumes. 

30 The person will be known to be above a quality cutoff 
either because the individual is a current member of a 
comparable orchestra or because the person was a semifi- 
nalist or finalist in a previous audition. 

31 For 13 percent of the contestants, sex was confirmed 
by personnel managers, resumes, or audition summary 
sheets. 

32 Most of the remainder were sexed using census data 
by assigning to them the dominant sex of individuals with 
their first name. 
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Yi ∼ Normal(μi, σ)
μi = α + βXXi + βSSi + βAAi
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Coefficient for X:  
Effect of X on Y 
(still must 
marginalize!)
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Coefficient for S:  
Direct effect of S on Y
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Direct effect of A on Y
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Table 2 Fallacy
Not all coefficients created equal 

So do not present them as equal 

Options: 

Do not present control coefficients 

Give explicit interpretation of each 

No causal model, no interpretation

A
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S
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Imagine Confounding
Often we cannot credibly adjust for all 
confounding 

Do not give up! 

Biased estimate can be better than no 
estimate 

Sensitivity analysis: draw the 
implications of what you don’t know 

Find natural experiment or design one



Course Schedule
Week 1 Bayesian inference Chapters 1, 2, 3
Week 2 Linear models & Causal Inference Chapter 4
Week 3 Causes, Confounds & Colliders Chapters 5 & 6
Week 4 Overfitting / MCMC Chapters 7, 8, 9
Week 5 Generalized Linear Models Chapters 10, 11
Week 6 Integers & Other Monsters Chapters 11 & 12
Week 7 Multilevel models I Chapter 13
Week 8 Multilevel models II Chapter 14
Week 9 Measurement & Missingness Chapter 15
Week 10 Generalized Linear Madness Chapter 16
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