06: Good & Bad Controls

Statistical Rethinking

grandparent G education

parent education

unobserved confound

child education

P is a mediator

P is a collider

Can estimate **total** effect of *G* on *C*

 $C_i \sim \text{Normal}(\mu_i, \sigma)$ $\mu_i = \alpha + \beta_G G_i$

Cannot estimate direct effect

 $C_i \sim \text{Normal}(\mu_i, \sigma)$ $\mu_i = \alpha + \beta_G G_i + \beta_P P_i$

N <- 200 # num grandparent-parent-child triads b_GP <- 1 # direct effect of G on P b_GC <- 0 # direct effect of G on C b_PC <- 1 # direct effect of P on C b_U <- 2 #direct effect of U on P and C set.seed(1) $U < -2 \times rbern(N, 0.5) - 1$ G <- rnorm(N) $P <- rnorm(N, b_GP*G + b_U*U)$ $C <- rnorm(N, b_PC*P + b_GC*G + b_U*U)$ d <- data.frame(C=C , P=P , G=G , U=U)</pre> m6.11 <- quap(alist(C ~ dnorm(mu , sigma), $mu < -a + b_PC*P + b_GC*G$, $a \sim dnorm(0, 1),$ $c(b_PC, b_GC) \sim dnorm(0, 1),$ sigma ~ dexp(1)), data=d)

Page 180

Stratify by parent centile (collider)

Two ways for parents to attain their education: from *G* or from *U*

From Theory to Estimate

Our job is to (1) Clearly state assumptions (2) Deduce implications (3) Test implications

Avoid Being Clever At All Costs

Being clever is neither reliable nor transparent

Now what?

Given a causal model, can use logic to derive implications

Others can use same logic to verify/ challenge your work

The Fork

 $X \leftarrow Z \rightarrow Y$

The Pipe $X \rightarrow Z \rightarrow Y$

The Collider

 $X \rightarrow Z \leftarrow Y$

X and Y associated unless stratify by Z

X and Y associated unless stratify by Z

X and Y not associated unless stratify by Z

Forks

Forks

Pipes

Forks

Pipes

Colliders

global change in culture, Genome research 2015, DOI:10.1101/gr.186684.114

Size (thousands) Population Effective

DAG Thinking

In an experiment, we cut causes of the treatment

We *randomize* (hopefully)

So how does causal inference without randomization ever work?

Is there a statistical procedure that mimics randomization?

Without randomization

With randomization

DAG Thinking

Is there a statistical procedure that mimics randomization?

$P(Y|\operatorname{do}(X)) = P(Y|?)$

do(X) means intervene on X

Can analyze causal model to find answer (if it exists)

Without randomization

With randomization

Х—

 $U \xrightarrow{} Y$

Х---

Non-causal path X < -U -> Y

Close the fork! Condition on U

X·

Non-causal path X < -U -> Y

Close the fork! Condition on U

X

$P(Y|\operatorname{do}(X)) = \sum_{U} P(Y|X, U)P(U) = \operatorname{E}_{U} P(Y|X, U)$

"The distribution of Y, stratified by X and U, averaged over the distribution of U."

Non-causal path X < -U -> Y

Close the fork! Condition on U

$P(Y|\operatorname{do}(X)) = \sum_{U} P(Y|X, U)P(U) = \operatorname{E}_{U} P(Y|X, U)$

"The distribution of Y, stratified by X and U, averaged over the distribution of U."

The causal effect of *X* on *Y* is **not** (in general) the **coefficient** relating *X* to *Y*

It is the distribution of *Y* when we change *X*, **averaged** over the distributions of the control variables (here *U*)

Marginal Effects Example

cheetahs

baboons

Marginal Effects Example

cheetahs present

cheetahs absent

Causal effect of baboons depends upon distribution of cheetahs

do-calculus

For DAGs, rules for finding P(Y|do(X)) known as **do-calculus**

do-calculus says what is possible to say **before** picking functions

Additional assumptions yield additional implications

do-calculus

do-calculus is worst case: additional assumptions often allow stronger inference

do-calculus is **best case**: if inference possible by docalculus, does not depend on special assumptions

do-calculus, in 1966

Very useful implication of do-calculus is the **Backdoor Criterion**

Backdoor Criterion is a shortcut to applying rules of do-calculus

Also inspires strategies for research design that yield valid estimates

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield P(Y|do(X))

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield P(Y|do(X))

(1) Identify all **paths** connection the treatment (X) to the outcome (Y)

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield P(Y|do(X))

(1) Identify all **paths** connection the treatment (X) to the outcome (Y)

(2) Paths with arrows **entering** X are backdoor paths (non-causal paths)

Backdoor Criterion: Rule to find a set of variables to stratify (condition) by to yield P(Y|do(X))

(1) Identify all **paths** connection the treatment (X) to the outcome (Y)

(2) Paths with arrows **entering** X are backdoor paths (non-causal paths)

(3) Find adjustment set that closes/blocks all backdoor paths

(1) Identify all **paths** connection the treatment (*X*) to the outcome (*Y*)

(2) Paths with arrows **entering** *X* are backdoor paths (non-causal paths)

(3) Find a set of control variables that close/block all backdoor paths

Block the pipe: $X \perp U \mid Z$

(3) Find a set of control variables that close/block all backdoor paths

Block the pipe: $X \perp U \mid Z$

$P(Y|\operatorname{do}(X)) = \sum P(Y|X,Z)P(Z)$ U

 $Y_i \sim \text{Normal}(\mu_i, \sigma)$ $\mu_i = \alpha + \beta_X X_i + \beta_Z Z_i$

List all the paths connecting X and Y. Which need to be closed to estimate effect of X on Y?

 $Z \longrightarrow Y$

Adjustment set: nothing!

List all the paths connecting X and Y. Which need to be closed to estimate effect of X on Y?

$P(Y|\operatorname{do}(X))$

 $A \longrightarrow Z \longleftarrow B$ $X \longrightarrow Y$

 $A \longrightarrow Z \longleftarrow B$ $X \longrightarrow Y$

Adjustment set: C, Z, and either A or B

(*B* is better choice)

www.dagitty.net

Model | Examples | How to ... | Layout | Help

Adjustment (total effect) ~ Minimal sufficient adjustment sets for estimating the total effect of X on Y:

- A, C, Z
- B, C, Z

Testable implications

The model implies the following conditional independences:

- X ⊥ B | A, Z
- Y⊥AIB, C, X, Z
- A ⊥ B
- A ⊥ C
- B ⊥ C
- Z ⊥ C

Export R code

Backdoor Criterion: Rule to find adjustment set to yield P(Y|do(X))

Backdoor Criterion: Rule to find adjustment set to yield P(Y|do(X))

Beware non-causal paths that you open while closing other paths!

Backdoor Criterion: Rule to find adjustment set to yield P(Y|do(X))

Beware non-causal paths that you open while closing other paths!

More than backdoors:

Backdoor Criterion: Rule to find adjustment set to yield P(Y|do(X))

Beware non-causal paths that you open while closing other paths!

More than backdoors:

Also solutions with simultaneous equations (instrumental variables e.g.)

Backdoor Criterion: Rule to find adjustment set to yield P(Y|do(X))

Beware non-causal paths that you open while closing other paths!

More than backdoors:

Also solutions with simultaneous equations (instrumental variables e.g.)

Full Luxury Bayes: use all variables, but in separate sub-models instead of single regression

http://www.blackswanman.com/

Good & Bad Controls

"Control" variable: Variable introduced to an analysis so that a causal estimate is possible

Common **wrong** heuristics for choosing control variables

Anything in the spreadsheet **YOLO**!

Any variables not highly collinear

Any pre-treatment measurement (baseline)

CONTROL **ALL THE** THINGS

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls

Cinelli, Forney, Pearl 2021 A Crash Course in Good and Bad Controls

(1) List the paths

(1) List the paths

 $X \rightarrow Y$

(1) List the paths

 $X \rightarrow Y$

$X \leftarrow u \to Z \leftarrow v \to Y$

(1) List the paths (2) Find backdoors

 $X \rightarrow Y$ frontdoor & open

 $X \leftarrow u \to Z \leftarrow v \to Y$

backdoor & closed

(1) List the paths (2) Find backdoors

 $X \rightarrow Y$ frontdoor & open

 $X \leftarrow u \to (Z) \leftarrow v \to Y$ backdoor & closed

(1) List the paths (2) Find backdoors (3) Close backdoors

 $X \rightarrow Y$ frontdoor & open

 $X \leftarrow u \to Z \leftarrow v \to Y$

backdoor & closed

What happens if you stratify by *Z*?

Opens the backdoor path

Z could be a **pre-treatment** variable

Not safe to always control pretreatment measurements

$X \to Z \to Y$ $X \to Z \leftarrow u \to Y$

No backdoor, no need to control for Z

f <- function(n=100,bXZ=1,bZY=1) { X < - rnorm(n)u < - rnorm(n)Z <- rnorm(n, bXZ*X + u)Y < - rnorm(n, bZY + u)bX <- coef(lm(Y ~ X))['X'] bXZ < - coef(lm(Y ~ X + Z))['X']return(c(bX,bXZ)) } sim <- mcreplicate(le4 , f() , mc.cores=8)</pre> dens(sim[1,] , lwd=3 , xlab="posterior mean") dens(sim[2,] , lwd=3 , col=2 , add=TRUE)

f <- function(n=100,bXZ=1,bZY=1) { X < - rnorm(n)u < - rnorm(n)Z <- rnorm(n, bXZ*X + u)Y < - rnorm(n, bZY*Z + u)bX <- coef(lm(Y ~ X))['X'] bXZ <- coef(lm(Y ~ X + Z))['X']return(c(bX,bXZ)) } sim <- mcreplicate(le4 , f() , mc.cores=8)</pre> dens(sim[1,] , lwd=3 , xlab="posterior mean") dens(sim[2,] , lwd=3 , col=2 , add=TRUE)

Change bZY to zero

```
f < - function(n=100,bXZ=1,bZY=1) {
    X < - rnorm(n)
   u <- rnorm(n)
   Z <- rnorm(n, bXZ + u)
    Y < - rnorm(n, bZY + u)
    bX <- coef( lm(Y ~ X))['X']
    bXZ <- coef(lm(Y ~ X + Z))['X']
    return( c(bX,bXZ) )
sim <- mcreplicate( le4 , f(bZY=0) , mc.cores=8 )</pre>
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


 $X \to Z \to Y$ $X \to Z \leftarrow u \to Y$

Controlling for *Z* biases treatment estimate *X*

Controlling for Z opens biasing path through u

Can estimate effect of X; Cannot estimate mediation effect Z

No backdoor, no need to control for Z

Post-treatment bias is common

TABLE 1 Posttreatment Conditioning in Experimental Studies

Category	Prevalen
Engages in posttreatment conditioning	46.7%
Controls for/interacts with a	21.3%
posttreatment variable	
Drops cases based on posttreatment	14.7%
criteria	
Both types of posttreatment conditioning	10.7%
present	
No conditioning on posttreatment variables	52.0%
Insufficient information to code	1.3%

Note: The sample consists of 2012–14 articles in the *American Po*litical Science Review, the American Journal of Political Science, and the Journal of Politics including a survey, field, laboratory, or labin-the-field experiment (n = 75).

Montgomery et al 2018 How Conditioning on Posttreatment Variables Can Ruin Your Experiment

Do not touch the collider!

Colliders not always so obvious

"Case-control bias"

"Case-control bias"


```
f <- function(n=100,bXY=1,bYZ=1) {
    X <- rnorm(n)
    Y <- rnorm(n, bXY*X )
    Z <- rnorm(n, bYZ*Y )
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef( lm(Y ~ X + Z) )['X']
    return( c(bX,bXZ) )
}
sim <- mcreplicate( le4 , f() , mc.cores=8 )
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )</pre>
```


"Precision parasite"

No backdoors

But still not good to condition on Z


```
f <- function(n=100, bZX=1, bXY=1) 
    Z < - rnorm(n)
    X <- rnorm(n, bZX*Z)
    Y < - rnorm(n, bXY * X)
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef(lm(Y ~ X + Z))['X']
    return( c(bX,bXZ) )
}
sim <- mcreplicate( le4 , f(n=50) , mc.cores=8 )</pre>
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


"Bias amplification" X and Y confounded by u

Something truly awful happens when we add Z


```
f <- function(n=100, bZX=1, bXY=1) 
    Z < - rnorm(n)
    u < - rnorm(n)
    X < - rnorm(n, bZX + u)
    Y < - rnorm(n, bXY + u)
    bX <- coef( lm(Y ~ X) )['X']
    bXZ <- coef(lm(Y ~ X + Z))['X']
    return( c(bX,bXZ) )
sim <- mcreplicate( le4 , f(bXY=0) , mc.cores=8 )</pre>
dens( sim[1,] , lwd=3 , xlab="posterior mean" )
dens( sim[2,] , lwd=3 , col=2 , add=TRUE )
```


WHY?

Covariation X & Y requires variation in their causes

Within each level of *Z*, less variation in *X*

Confound *u* relatively more important within each *Z*

Good & Bad Controls

"Control" variable: Variable introduced to an analysis so that a causal estimate is possible

Heuristics fail — adding control variables can be worse than omitting

Make assumptions explicit

MODEL **ALL THE** THINGS

Table 2 Fallacy

Not all coefficients are causal effects

Statistical model designed to identify *X* -> *Y* will not also identify effects of control variables

Table 2 is dangerous

TABLE 2----ESTIMATED PROBIT MODELS FOR THE USE OF A SCREEN

	Preliminaries blind		Fina blir	
	(1)	(2)	(3	
(Proportion female) _{$t-1$}	2.744	3.120	0.	
	(3.265)	(3.271)	(1.)	
	[0.006]	[0.004]	[0.0	
(Proportion of orchestra	-26.46	-28.13	-9	
personnel with <6	(7.314)	(8.459)	(2.7	
years tenure) _{t - 1}	[-0.058]	[-0.039]	[-0.2	
"Big Five" orchestra		0.367		
		(0.452)		
		[0.001]		
pseudo R^2	0.178	0.193	0.	
Number of observations	294	294		

Westreich & Greenland 2013 The Table 2 Fallacy

).050 434

Westreich & Greenland 2013 The Table 2 Fallacy

$Y_i \sim \text{Normal}(\mu_i, \sigma)$ $\mu_i = \alpha + \beta_X X_i + \beta_S S_i + \beta_A A_i$

Confounded by *A* and *S*

Confounded by *A* and *S*

Conditional on A and S

Coefficient for **X**: Effect of *X* on *Y* (still must marginalize!)

Effect of *S* confounded by *A*

Effect of *S* confounded by *A*

Conditional on A and X

Coefficient for **S**: Direct effect of S on Y

Total causal effect of *A* on *Y* flows through all paths

Total causal effect of *A* on *Y* flows through all paths

Conditional on X and S

Coefficient for *A*: Direct effect of *A* on *Y*

Not all coefficients created equal

So do not present them as equal Options:

Do not present control coefficients Give explicit interpretation of each No causal model, no interpretation

Imagine Confounding

Often we cannot credibly adjust for all confounding

Do not give up!

Biased estimate can be better than no estimate

Sensitivity analysis: draw the implications of what you don't know

Find natural experiment or design one

Course Schedule

Week 1	Bayesian inference	Chapters 1, 2, 3
Week 2	Linear models & Causal Inference	Chapter 4
Week 3	Causes, Confounds & Colliders	Chapters 5 & 6
Week 4	Overfitting / MCMC	Chapters 7, 8, 9
Week 5	Generalized Linear Models	Chapters 10, 11
Week 6	Integers & Other Monsters	Chapters 11 & 12
Week 7	Multilevel models I	Chapter 13
Week 8	Multilevel models II	Chapter 14
Week 9	Measurement & Missingness	Chapter 15
Week 10	Generalized Linear Madness	Chapter 16

https://github.com/rmcelreath/stat_rethinking_2022

