Statistical Rethinking

05: Elemental Confounds

"If you get there and the Waffle House is closed? That's really bad. That's when you go to work."

Does Waffle House cause divorce?

Correlation is commonplace

Divorce rate in Maine
 correlates with
 Per capita consumption of margarine

http://www.tylervigen.com/spurious-correlations

Ye Olde Causal Alchemy The Four Elemental Confounds

The Fork $\mathrm{x} \leftarrow \mathrm{z} \rightarrow \mathrm{Y}$	The Pipe $\mathrm{X} \rightarrow \mathrm{z} \longrightarrow \mathrm{Y}$
The Collider	The Descendant
$\mathrm{X} \rightarrow \mathrm{L} \leftarrow \mathrm{Y}$	$\mathrm{X} \rightarrow \mathrm{z} \rightarrow \mathrm{Y}$
	\downarrow

The Fork

$X \leftarrow Z \longrightarrow Y$
Z is a "confounder"
X and Y are associated
$Y \not \Perp X$

Share a common cause Z

Once stratified by Z, no association

$$
\begin{aligned}
& X \leftarrow Z \rightarrow Y \\
&
\end{aligned}
$$

$X \leftarrow Z \rightarrow Y$

$$
Z=0 \quad Z=1
$$

```
cols <- c(4,2)
```

$N<-300$
Z <- rbern(N)
$X<-\operatorname{rnorm}(N, 2 * Z-1)$
Y <- $\operatorname{rnorm}(N, 2 * Z-1)$
plot(X , Y , col=cols[Z+1] , lwd=3)
abline(lm(Y[Z==1]~X[Z==1]), col=2,lwd=3)
abline $(\operatorname{lm}(\mathrm{Y}[\mathrm{Z}==0] \sim \mathrm{X}[\mathrm{Z}==0])$, col=4, $\mathrm{lwd}=3)$
abline(lm $(\mathrm{Y} \sim X)$, lwd $=3)$

Fork Example

Why do regions of the USA with higher rates of marriage also have higher rates of divorce?

Marrying the Owl

(1) Estimand: Causal effect of marriage rate on divorce
$M \xrightarrow{?} D$ rate
(2) Scientific model
(3) Statistical model
(4) Analyze

Marrying the Owl

(1) Estimand: Causal effect of marriage rate on divorce
$M \xrightarrow{?} D$ rate
(2) Scientific model
(3) Statistical model
(4) Analyze

Marriage
Divorce

Age at marriage

Fork: $M<-\boldsymbol{A}->\boldsymbol{D}$
To estimate direct effect of \boldsymbol{M}, need to break the fork

Break the fork by stratifying by \boldsymbol{A}

What does it mean to stratify by a continuous variable?

It depends

How does A influence D ?
What is $D=f(A, M)$?
In a linear regression:

$$
\begin{aligned}
D_{i} & \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right) \\
\mu_{i} & =\alpha+\beta_{M} M_{i}+\beta_{A} A_{i}
\end{aligned}
$$

What does it mean to stratify by a continuous variable?

$$
\mu_{i}=\alpha+\beta_{M} M_{i}+\beta_{A} A_{i}
$$

Every value of A produces of different relationship between D and M :

$$
\begin{aligned}
& \mu_{i}=\left(\alpha+\beta_{A} A_{i}\right)+\beta_{M} M_{i} \\
& \quad \text { intercept }
\end{aligned}
$$

Statistical Fork

To stratify by A (age at marriage), include as term in linear model

$$
\begin{aligned}
D_{i} & \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right) \\
\mu_{i} & =\alpha+\beta_{M} M_{i}+\beta_{A} A_{i} \\
\alpha & \sim \operatorname{Normal}(?, ?) \\
\beta_{M} & \sim \operatorname{Normal}(?, ?) \\
\beta_{A} & \sim \operatorname{Normal}(?, ?) \\
\sigma & \sim \operatorname{Exponential}(?)
\end{aligned}
$$

We are going to standardize the data

Standardizing the Owl

Often convenient to standardize variables in linear regression

Standardize: Subtract mean and divide by standard deviation

Computation works better
Easy to choose sensible priors

Prior predictive simulation

Some default priors
$D_{i} \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right)$
$\mu_{i}=\alpha+\beta_{M} M_{i}+\beta_{A} A_{i}$
$\alpha \sim \operatorname{Normal}(0,10)$
$\beta_{M} \sim \operatorname{Normal}(0,10)$
$\beta_{A} \sim \operatorname{Normal}(0,10)$
$\sigma \sim$ Exponential(1)

```
# prior predictive simulation
```


prior predictive simulation

n <- 20
n <- 20
a <- rnorm(n,0,10)
a <- rnorm(n,0,10)
bM <- rnorm(n,0,10)
bM <- rnorm(n,0,10)
bA <- rnorm(n,0,10)
bA <- rnorm(n,0,10)
plot(NULL , xlim=c(-2,2) , ylim=c(-2,2) ,
plot(NULL , xlim=c(-2,2) , ylim=c(-2,2) ,
xlab="Median age of marriage (standardized)" ,
xlab="Median age of marriage (standardized)" ,
ylab="Divorce rate (standardized)")
ylab="Divorce rate (standardized)")
Aseq <- seq(from=-3, to=3, len=30)
Aseq <- seq(from=-3, to=3, len=30)
for (i in 1:n) {
for (i in 1:n) {
mu <- a[i] + bA[i]*Aseq
mu <- a[i] + bA[i]*Aseq
lines(Aseq , mu , lwd=2 , col=2)
lines(Aseq , mu , lwd=2 , col=2)
}

```
}
```


Prior predictive simulation

Some default priors

$$
\begin{aligned}
D_{i} & \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right) \\
\mu_{i} & =\alpha+\beta_{M} M_{i}+\beta_{A} A_{i}
\end{aligned}
$$

$\alpha \sim \operatorname{Normal}(0,10)$
$\beta_{M} \sim \operatorname{Normal}(0,10)$
$\beta_{A} \sim \operatorname{Normal}(0,10)$
$\sigma \sim$ Exponential(1)

Prior predictive simulation

Better priors
$D_{i} \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right)$ $\mu_{i}=\alpha+\beta_{M} M_{i}+\beta_{A} A_{i}$
$\alpha \sim \operatorname{Normal}(0,0.2)$
$\beta_{M} \sim \operatorname{Normal}(0,0.5)$
$\beta_{A} \sim \operatorname{Normal}(0,0.5)$
$\sigma \sim$ Exponential(1)

```
# better priors
n <- 20
a<- rnorm(n,0,0.2)
bM <- rnorm(n,0,0.5)
bA <- rnorm(n,0,0.5)
plot( NULL , xlim=c(-2,2) , ylim=c(-2,2) ,
xlab="Median age of marriage (standardized)" ,
ylab="Divorce rate (standardized)" )
Aseq <- seq(from=-3,to=3, len=30)
for ( i in 1:n ) {
    mu <- a[i] + bA[i]*Aseq
    lines( Aseq , mu , lwd=2 , col=2 )
}
```


Prior predictive simulation

Better priors

$D_{i} \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right)$
$\mu_{i}=\alpha+\beta_{M} M_{i}+\beta_{A} A_{i}$
$\alpha \sim \operatorname{Normal}(0,0.2)$
$\beta_{M} \sim \operatorname{Normal}(0,0.5)$
$\beta_{A} \sim \operatorname{Normal}(0,0.5)$
$\sigma \sim$ Exponential(1)

Marrying the Owl

(1) Estimand: Causal effect of marriage rate on divorce rate
(2) Scientific model
(3) Statistical model

(4) Analyze

Analyze data

```
# model
dat <- list(
    D = standardize(d$Divorce),
    M = standardize(d$Marriage),
    A = standardize(d$MedianAgeMarriage)
)
m_DMA <- quap(
    alist(
        D ~ dnorm(mu, sigma) ,
        mu <- a + bM*M + bA*A,
        a ~ dnorm(0,0.2),
        bM ~ dnorm(0,0.5),
        bA ~ dnorm(0,0.5),
        sigma ~ dexp(1)
    ), data=dat )
```

$$
\begin{aligned}
D_{i} & \sim \operatorname{Normal}\left(\mu_{i}, \sigma\right) \\
\mu_{i} & =\alpha+\beta_{M} M_{i}+\beta_{A} A_{i} \\
\alpha & \sim \operatorname{Normal}(0,0.2) \\
\beta_{M} & \sim \operatorname{Normal}(0,0.5) \\
\beta_{A} & \sim \operatorname{Normal}(0,0.5) \\
\sigma & \sim \operatorname{Exponential}(1)
\end{aligned}
$$

Analyze data

```
# model
dat <- list(
    D = standardize(d$Divorce),
    M = standardize(d$Marriage),
    A = standardize(d$MedianAgeMarriage)
)
m_DMA <- quap(
    alist(
        D ~ dnorm(mu,sigma),
        mu <- a + bM*M + bA*A,
        a ~ dnorm(0,0.2),
        bM ~ dnorm(0,0.5),
        bA ~ dnorm(0,0.5),
        sigma ~ dexp(1)
    ) , data=dat )
```

```
plot(precis(m_DMA))
```


In this case, slope $\mathbf{b M}$ is estimand, but it's not always so simple

Now the data frame d has 100 simulated cases. Because x_real influences both y and x_spur, you can think of x_spur as another outcome of x_{-}real, but one which we mistake as a potential predictor of y. As a result, both $x_{\text {real }}$ and $x_{\text {spur }}$ are correlated with y. You can see this in the scatterplots from
pairs (d). But when you include both x variables in a linear regression predicting y, the posterior mean for the association between y and $x_{\text {spur }}$ will be close to zero.
5.1.5.3. Counterfactual plots. A second sort of inferential plot displays the causal implications of the model. I call these plots counterfactual, because they can be produced for any values of the predictor variables you like, even unobserved combinations like very high median age of marriage and very high marriage rate. There are no States with this combination, but in a counterfactual plot, you can ask the model for a prediction for such a State, asking questions like "What would Utah's divorce rate be, if it's median age at marriage were higher?" Used with clarity of purpose, counterfactual plots help you understand the model, as well as generate predictions for imaginary interventions and compute how much some observed outcome could be attributed to some cause.

Note that the term "counterfactual" is highly overloaded in statistics and philosophy. It hardly ever means the same thing when used by different authors. Here, I use it to indicate some computation that makes use of the structural causal model, going beyond the posterior distribution. But it could refer to questions about both the past and the future

The simplest use of a counterfactual plot is to see how the outcome would change as you change one predictor at a time. If some predictor X took on a new value for one or more cases in our data, how would the outcome Y have changed? Changing just one predictor X might also change other predictors, depending upon the causal model. Suppose for example that you pay young couples to postpone marriage until they are 35 years old. Surely this will also decrease the number of couples who ever get married-some people will die before turning 35 , among other reasons-decreasing the overall marriage rate. An extraordinary and evil degree of control over people would be necessary to really hold marriage rate constant while forcing everyone to marry at a later age.

So let's see how to generate plots of model predictions that take the causal structure into account. The basic recipe is:
(1) Pick a variable to manipulate, the intervention variable.
(2) Define the range of values to set the intervention variable to
(3) For each value of the intervention variable, and for each sample in posterior, use the causal model to simulate the values of other variables, including the outcome. In the end, you end up with a posterior distribution of counterfactual outcomes that you can plot and summarize in various ways, depending upon your goal.

Let's see how to do this for the divorce model. Again we take this DAG as given

To simulate from this, we need more than the DAG. We also need a set of functions that tell us how each variable is generated. For simplicity, we'll use Gaussian distributions for each variable, just like in model m5.3. But model m5. 3 ignored the assumption that A influences

Overthinking: Simulating counterfactuals. The example in this section used sim() to hide the details. But simulating counterfactuals on your own is not hard. It just uses the model definition. Assume we've already fit model m5.3_A, the model that includes both causal paths $A \rightarrow D$ and $A \rightarrow M \rightarrow D$. We define a range of values that we want to assign to A :

```
A_seq <- seq( from=-2 , to=2 , length.out=30 )
```

Next we need to extract the posterior samples, because we'll simulate observations for each set of samples. Then it really is just a matter of using the model definition with the samples, as in previous examples. The model defines the distribution of M. We just convert that definition to the corresponding simulation function, which is rnorm in this case:
post <- extract.samples(m5.3_A)
M_sim <- with(post , sapply(1:30 ,
function(i) rnorm(1 e 3 , $\left.a M+b A M * A _s e q[i], s i g m a _M\right)$))

I used the with function, which saves us having to type posts in front of every parameter name. The linear model inside rnorm comes right out of the model definition. This produces a matrix of values, with samples in rows and cases corresponding to the values in A_seq in the columns. Now that we have simulated values for M, we can simulate D too:
D_sim <- with(post , sapply(1:30,
function(i) rnorm($1 e 3$, $a+b A * A _s e q[i]+b M * M _s i m[, i]$, sigma)))

If you plot A_seq against the column means of D_sim, you'll see the same result as before. In complex models, there might be many more variables to simulate. But the basic procedure is the same.

Ye Olde Causal Alchemy The Four Elemental Confounds

The Fork $\mathrm{x} \leftarrow \mathrm{z} \rightarrow \mathrm{Y}$	The Pipe $\mathrm{X} \rightarrow \mathrm{z} \longrightarrow \mathrm{Y}$
The Collider	The Descendant
$\mathrm{X} \rightarrow \mathrm{L} \leftarrow \mathrm{Y}$	$\mathrm{X} \rightarrow \mathrm{z} \rightarrow \mathrm{Y}$
	\downarrow

The Pipe

$X \rightarrow Z \rightarrow Y$

Z is a "mediator"
X and Y are associated
$Y \nVdash X$
Influence of X on Y transmitted through Z
Once stratified by Z, no association
$Y \Perp X \mid Z$

$$
\begin{aligned}
& X \rightarrow Z \rightarrow Y \\
& \\
& 0430 \quad 87 \quad Y \not \Perp X \\
& 193390 \\
& >\operatorname{cor}(X, Y) \\
& \text { [1] } 0.64
\end{aligned}
$$

$X \rightarrow Z \rightarrow Y$

$$
Z=0 \quad Z=1
$$

```
cols <- c(4,2)
N <- 300
X <- rnorm(N)
Z <- rbern(N,inv_logit(X))
Y <- rnorm(N,(2*Z-1))
plot( X , Y , col=cols[Z+1] , lwd=3 )
abline(lm(Y[Z==1]~X[Z==1]), col=2,lwd=3)
abline(lm(Y[Z==0]~X[Z==0]), col=4, lwd=3)
abline(lm(Y~X), lwd=3)
```


Pipe Example

Plant growth experiment
100 plants
Half treated with anti-fungal
Measure growth and fungus
Estimand: Causal effect of treatment on plant growth

Scientific model

Scientific model

Statistical model

Estimand: Total causal effect of T
The path $T->F->H_{l}$ is a pipe
Should we stratify by F ?
NO - that would block the pipe
See pages 170-175 for complete

The treatment must flow example

Post-treatment bias

Stratifying by (conditioning on) F induces post-treatment bias

Might conclude that treatment doesn't work when it actually does

Consequences of treatment should not usually be included in your statistical model (do include in scientific model!)

Doing experiments is no protection against bad causal inference

Table 1 Posttreatment Conditioning in Experimental Studies

Category	Prevalence
Engages in posttreatment conditioning	46.7%
\quad Controls for/interacts with a	21.3%
\quad posttreatment variable	14.7%
Drops cases based on posttreatment	10.7%
\quad criteria	
\quad Both types of posttreatment conditioning	52.0%
\quad present	1.3%
No conditioning on posttreatment variables Insufficient information to code	

From Montgomery et al 2018 "How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It"

Ye Olde Causal Alchemy The Four Elemental Confounds

The Fork $\mathrm{x} \leftarrow \mathrm{z} \rightarrow \mathrm{Y}$	The Pipe $\mathrm{X} \rightarrow \mathrm{z} \longrightarrow \mathrm{Y}$
The Collider	The Descendant
$\mathrm{X} \rightarrow \mathrm{L} \leftarrow \mathrm{Y}$	$\mathrm{X} \rightarrow \mathrm{z} \rightarrow \mathrm{Y}$
	\downarrow

The Collider

$X \rightarrow Z \leftarrow Y$
Z is a "collider"
X and Y are not associated (share no causes) $Y \Perp X$
X and Y both influence Z
Once stratified by Z, X and Y associated $Y \nVdash X \mid Z$

$X \rightarrow Z \leftarrow Y$

```
n <- 1000
X <- rbern( n , 0.5 )
Y <- rbern( n , 0.5 )
Z <- rbern( n , ifelse(X+Y>0,0.9,0.2) )
```

\[

\]

$>\operatorname{cor}(X, Y)$
[1] 0.027

$$
\begin{array}{ccc}
& Y \\
\mathbf{X} & 0 & \mathbf{1}
\end{array}
$$

$$
0243236
$$

$$
1250271
$$

$$
Y \Perp X
$$

$$
\begin{aligned}
& \mathbf{z}=\mathbf{1} \quad Y \nVdash X \mid Z \\
& >\operatorname{cor}(X[Z==0], Y[Z==0]) \\
& \text { [1] } 0.43 \\
& >\operatorname{cor}(X[Z==1], Y[Z==1]) \\
& \text { [1] -0.31 }
\end{aligned}
$$

$X \rightarrow Z \leftarrow Y$

$$
Z=0 \quad Z=1
$$

```
cols <- c(4,2)
N <- 300
X <- rnorm(N)
Y <- rnorm(N)
Z <- rbern(N,inv_logit(2*X+2*Y-2))
plot( X , Y , col=cols[Z+1] , lwd=3 )
abline(lm(Y[Z==1]~X[Z==1]), col=2,lwd=3)
abline(lm(Y[Z==0]~X[Z==0]), col=4,lwd=3)
abline(lm(Y~X), lwd=3)
```


Collider example

Some biases arise from selection
Suppose: 200 grant applications
Each scored on newsworthiness and trustworthiness

No association in population

Collider example

Some biases arise from selection
Suppose: 200 grant applications
Each scored on newsworthiness and trustworthiness

No association in population
Strong association after selection

Collider example

$$
N \longrightarrow A \longleftarrow T
$$

Awarded grants must have been sufficiently newsworthy or trustworthy

Few grants are high in both
Results in negative association, conditioning on award

Collider example

$$
N \longrightarrow A \longleftarrow T
$$

Similar examples:
Restaurants survive by having good food or a good location $=>$ bad food in good locations

Actors can succeed by being attractive or by being skilled => attractive actors are less skilled

Endogenous Colliders

Collider bias can arise through statistical processing

Endogenous selection: If you condition on (stratify by) a collider, creates phantom non-causal associations

Example: Does age influence happiness?

Age and Happiness

Estimand: Influence of age on happiness

Possible confound: Marital status
Suppose age has zero influence on happiness

But that both age and happiness

$$
H \longrightarrow M \longleftarrow A
$$

> Happiness
> Married
> Age influence marital status

Page 177

Stratified by marital status, negative association between age and happiness

-
 Married
 - Unmarried

Full workflow starting on page 176

Ye Olde Causal Alchemy The Four Elemental Confounds

The Fork $\mathrm{x} \leftarrow \mathrm{z} \rightarrow \mathrm{Y}$	The Pipe $\mathrm{X} \rightarrow \mathrm{z} \longrightarrow \mathrm{Y}$
The Collider	The Descendant
$\mathrm{X} \rightarrow \mathrm{L} \leftarrow \mathrm{Y}$	$\mathrm{X} \rightarrow \mathrm{z} \rightarrow \mathrm{Y}$
	\downarrow

The Descendant

A is a "descendant"

How a descendant behaves depends upon what it is
attached to

The Descendant

A is a "descendant"
X and Y are causally associated through Z $Y \Perp X$
A holds information about Z
Once stratified by A, X and Y less associated

```
if strong enough
    Y\PerpX|A
```



```
n <- 1000
X <- rbern( n , 0.5 )
Z <- rbern( n , (1-X)*0.1 + X*0.9 )
Y <- rbern( n , (1-Z)*0.1 + Z*0.9 )
A <- rbern( n , (1-Z)*0.1 + Z*0.9 )
```

\mathbf{Y}			
\mathbf{x}	0	1	
0	418	97	$Y \nVdash X$
1	98	387	

$>\operatorname{cor}(\mathrm{X}, \mathrm{Y})$
[1] 0.61

\[

\]

if strong enough

$$
A=\mathbf{1}
$$

$$
Y \Perp X \mid Z
$$

$>\operatorname{cor}(X[A==0], Y[A==0])$
[1] 0.26
$>\operatorname{cor}(X[A==1], Y[A==1])$
[1] 0.29

Descendants are everywhere

Many measurements are proxies of what we want to measure

Factor analysis

Measurement error

Social networks
U: Unobserved confound

Unobserved Confounds

Unmeasured causes (\boldsymbol{U}) exist and can ruin your day

Estimand: Direct effect of grandparents G on grandchildren C

Need to block pipe G -> P -> C

What happens when we condition on \boldsymbol{P} ?

Course Schedule

Week 1	Bayesian inference	Chapters 1, 2, 3
Week 2	Linear models \& Causal Inference	Chapter 4
Week 3	Causes, Confounds \& Colliders	Chapters 5 \& 6
Week 4	Overfitting / Interactions	Chapters 7 \& 8
Week 5	MCMC \& Generalized Linear Models	Chapters 9, 10, 11
Week 6	Integers \& Other Monsters	Chapters 11 \& 12
Week 7	Multilevel models I	Chapter 13
Week 8	Multilevel models II	Chapter 14
Week 9	Measurement \& Missingness	Chapter 15
Week 10	Generalized Linear Madness	Chapter 16

https://github.com/rmcelreath/stat_rethinking_2022

