
Markov Chain
Monte Carlo

Statistical Rethinking
Winter 2019

Lecture 10 / Week 5

probability of water

0 0.5 1

n = 1

W L W W W L W L W

co
nf
id
en
ce

probability of water

0 0.5 1

n = 2

W L W W W L W L W

probability of water

0 0.5 1

n = 3

W L W W W L W L W

probability of water

0 0.5 1

n = 4

W L W W W L W L W

co
nf
id
en
ce

probability of water

0 0.5 1

n = 5

W L W W W L W L W

probability of water

0 0.5 1

n = 6

W L W W W L W L W

probability of water

0 0.5 1

n = 7

W L W W W L W L W

co
nf
id
en
ce

probability of water

0 0.5 1

n = 8

W L W W W L W L W

probability of water

0 0.5 1

n = 9

W L W W W L W L W

proportion water
0 0.5 1

pl
au
si
bi
lit
y

n = 0

W L W W W L W L W

proportion water
0 0.5 1

pl
au
si
bi
lit
y

n = 0

W L W W W L W L W

proportion water
0 0.5 1

pl
au
si
bi
lit
y

n = 0

W L W W W L W L W

proportion water
0 0.5 1

pl
au
si
bi
lit
y

n = 0

W L W W W L W L W

proportion water
0 0.5 1

pl
au
si
bi
lit
y

n = 0

W L W W W L W L W

proportion water
0 0.5 1

pl
au
si
bi
lit
y

n = 0

W L W W W L W L W

=

Computing the posterior

1. Analytical approach (often impossible)
2. Grid approximation (very intensive)
3. Quadratic approximation (limited)
4. Markov chain Monte Carlo (intensive)

King Markov

The Metropolis Archipelago

Contract: King Markov must visit each island
in proportion to its population size.

Here’s how he does it...

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

1
2

1
2

(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

proposal

(2) Find population of proposal island.

1 2 3 4 5 6 7

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

proposal

(2) Find population of proposal island.

1 2 3 4 5 6 7
p5

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

proposal

(2) Find population of proposal island.

1 2 3 4 5 6 7
p5

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.

p4

proposal

(2) Find population of proposal island.

1 2 3 4 5 6 7
p5

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.

p4

(4) Move to proposal, with probability = p5

p4

proposal

(2) Find population of proposal island.

1 2 3 4 5 6 7

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.
(4) Move to proposal, with probability = p5

p4

(5) Repeat from (1)

(2) Find population of proposal island.

1 2 3 4 5 6 7

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.
(4) Move to proposal, with probability = p5

p4(5) Repeat from (1)

This procedure ensures visiting each island in
proportion to its population, in the long run.

Markov chain Monte Carlo

• Markov chain Monte Carlo (MCMC)
• Understand the approach
• Meet different algorithms

• Interfaces to MCMC: Stan & ulam
• How to sample responsibly
• How to recognize and fix problems

Metropolis algorithm

− =

Markov’s chain of visits

0 200 400 600 800 1000

2
4

6
8

10

week

is
la
nd

Markov’s chain of visits

0 200 400 600 800 1000

2
4

6
8

10

week

is
la
nd

2 4 6 8 10

0
5

10
15

20
25

island

nu
m

be
r o

f w
ee

ks

after 100 weeks

2 4 6 8 10

0
20

40
60

80
10
0

island

nu
m

be
r o

f w
ee

ks

after 500 weeks

2 4 6 8 10

0
10
0

20
0

30
0

40
0

island

nu
m

be
r o

f w
ee

ks

after 2000 weeks

0 2000 4000 6000 8000 10000

2
4

6
8

10

week

is
la
nd

Markov’s chain of visits

• Converges to correct proportions,
in the long run

• No matter which island starts
• As long as proposals are symmetric
• Example of Metropolis algorithm 2 4 6 8 10

0
50
0

10
00

15
00

island

nu
m

be
r o

f w
ee

ks

after 10000 weeks

Metropolis and MCMC

• Usual use is to draw samples from a
posterior distribution
• “Islands”: parameter values
• “Population size”: proportional to

posterior probability
• Works for any number of dimensions

(parameters)
• Works for continuous as well as

discrete parameters

Metropolis and MCMC
• Metropolis: Simple version of Markov chain Monte

Carlo (MCMC)
• Metropolis, Rosenbluth, Rosenbluth, Teller, and

Teller (1953)

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087

instead, only water molecules with different amounts of
excitation energy. These may follow any of three paths:

(a) The excitation energy is lost without dissociation
into radicals (by collision, or possibly radiation, as in
aromatic hydrocarbons).

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage.

(c) The molecules dissociate and escape from the
cage. In this case we would not expect them to move
more than a few molecular diameters through the dense
medium before being thermalized.

In accordance with the notation introduced by
Burton, Magee, and Samuel,22 the molecules following

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952).

THE JOURNAL OF CHEMICAL PHYSICS

paths (a) and (b) can be designated H 20* and those
following path (c) can be designated H 20t. It seems
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the
H 20t molecules, but this is not likely to be a complete
correspondence.

In conclusion we would like to emphasize that the
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters
used. However, this treatment is classical, and a correct
treatment must be wave mechanical; therefore the
result of this section cannot be taken as an a priori
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the
occurrence of electron capture as described by this
crude calculation. Further work is clearly needed.

VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines
NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigatiflg such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

T HE purpose of this paper is to describe a general
method, suitable for fast electronic computing

machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California.

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define dAB, the minimum distance between particles A
and B, as the shortest distance between A and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance dAB.

t We will use two-dimensional nomenclature here since it
is easier to visualize. The extension to three dimensions is obvious.

MANIAC:
Mathematical Analyzer, Numerical Integrator, and Computer

MANIAC:
1000 pounds
5 kilobytes of memory
70k multiplications/sec

Your laptop:
4–7 pounds
2–8 million kilobytes
Billions of multiplications/sec

Metropolis and MCMC

• Metropolis: Simple version of Markov
chain Monte Carlo (MCMC)

• Chain: Sequence of draws from
distribution

• Markov chain: History doesn’t matter,
just where you are now

• Monte Carlo: Random simulation
Andrei Andreyevich Markov

(Ма́рков)
(1856–1922)

Why MCMC?
• Sometimes can’t write an integrated posterior
• Even when can, often cannot use it
• Many problems are like this: Multilevel models,

networks, phylogenies, spatial models
• Optimization not a good strategy in high

dimensions — must have full distribution
• MCMC is not fancy. It is old and essential.

MCMC strategies
• Metropolis: Granddaddy of them all
• Metropolis-Hastings (MH): More

general
• Gibbs sampling (GS): Efficient

version of MH
• Metropolis and Gibbs are “guess

and check” strategies
• Hamiltonian Monte Carlo (HMC)

fundamentally different
• New methods being developed, but

future belongs to the gradient

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

Metropolis gets stuck

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

step size 0.1, accept rate 0.62

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

step size 0.25, accept rate 0.34

− .

Figure 9.3

small steps, slow walk bigs steps, low accept rate

Hamiltonian Monte Carlo

• Problem with Gibbs sampling (GS)
• High dimension spaces are concentrated
• GS gets stuck, degenerates towards

random walk
• Inefficient because re-explores

• Hamiltonian dynamics to the rescue
• represent parameter state as particle
• flick it around frictionless log-posterior
• record positions
• no more “guess and check”
• all proposals are good proposals

William Rowan Hamilton
(1805–1865)

Commemorated on Irish
Euro coin

Hamiltonian parable
• King Monty’s kingdom is a narrow valley N–S
• Population distribution inversely proportional to

altitude
• Algorithm:

• Start driving randomly N or S at random speed
• Car speeds up as it goes downhill
• Car slows as it goes uphill, might turn around
• Drive for pre-specified duration, then stop
• Repeat

• Stopping positions will be proportional to
population

North South

Hamiltonian parable
• King Monty’s kingdom is a narrow valley N–S
• Population distribution inversely proportional to

altitude
• Algorithm:

• Start driving randomly N or S at random speed
• Car speeds up as it goes downhill
• Car slows as it goes uphill, might turn around
• Drive for pre-specified duration, then stop
• Repeat

• Stopping positions will be proportional to
population

0 100 200 300
time

po
si
tio
n

0

south

north

Figure 9.5

Hamiltonian Monte Carlo
• Location is parameter values
• Really simulate motion on frictionless surface
• Surface is minus-log-posterior
• Series of simulations, each starting from previous
• Stopping points comprise valid MCMC samples

-3 -2 -1 0 1 2 3

1
2

3
4

5

x

-lo
g(
dn
or
m
(x
))

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or
m
(x
)

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

Figure 9.6

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

1

2

34

2D Gaussian, L = 11

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

2D Gaussian, L = 28

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

1

2

3

4

Posterior correlation -0.9

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

50 trajectories

∑
(|µ ,) +

∑
(|µ ,) + (µ | , .) + (µ , , .)

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

Hamiltonian Monte Carlo

• Why does HMC work much better?
• Doesn’t get stuck — follows gradient
• Extra variables (momentum, energy)

provide diagnostics
• But also requires more

• Gradients — curvature of log-posterior
• “Mass” of particle
• Number of leaps in a single trajectory
• Size of individual leaps

• These need to be tuned right
• Gradients are unique to each model

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

1

2

34

2D Gaussian, L = 11

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

2D Gaussian, L = 28

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

1

2

3

4

Posterior correlation -0.9

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

50 trajectories

∑
(|µ ,) +

∑
(|µ ,) + (µ | , .) + (µ , , .)

∂ (| ,)

∂
=
−

∂

∂µ
=

∂ (|µ ,)

∂µ
+

∂ (µ | , .)

∂µ
=
∑ − µ

+
− µ

.

µ

Figure 9.6

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

1

2

34

2D Gaussian, L = 11

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

2D Gaussian, L = 28

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

1

2

3

4

Posterior correlation -0.9

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

50 trajectories

∑
(|µ ,) +

∑
(|µ ,) + (µ | , .) + (µ , , .)

The U-Turn Problem

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

Stan is NUTS

• No U-Turn Sampler (NUTS2): Adaptive
Hamiltonian Monte Carlo

• Implemented in Stan (rstan: mc-stan.org)
• Stan figures out gradient for you

• autodiff, back-propagation

Formula Stan
model

C++
model

Reusable
Sampler

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

Stanislaw Ulam (1909–1984)

mc-stan.org

Stanislaw Ulam and his daughter Claire with MANIAC

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/

HMC Praxis

• Back to terrain ruggedness

• Re-approximate posterior

• Practical details

• What to expect from healthy
Markov chains

One hand QUAP’ing

Hamiltonian Flows
• Interface to Stan: ulam

Hamiltonian Flows
• What happens when you use ulam?

• Translates formula into raw Stan model code
• Stan then builds a custom NUTS sampler
• Sampler runs
• Samples fed back to R

Hamiltonian Flows

• Num samples = total minus warmup
• Default warmup is half

Hamiltonian Flows

• n_eff: number of effective samples
• can be larger than actual samples!

• Rhat: Convergence diagnostic — “1” is good

Figure 9.7

sigma

-0.1 0.1 0.3 0.84 0.88 0.92

0.
09

0.
11

0.
13

-0
.1

0.
1

0.
3

-0.03

b.1

0 0

b.2

-0
.3
0

-0
.1
5

0.
00

0.
84

0.
88

0.
92

0 0.11 0

a.1

0.09 0.11 0.13

-0.08 0.06

-0.30 -0.15 0.00

-0.05 0.04

1.01 1.04 1.07

1.
01

1.
04

1.
07a.2

http://en.wikipedia.org/wiki/Baron
http://en.wikipedia.org/wiki/Baron

Check the chains

• Sometimes it doesn’t work
• Good chains:

• Converge to same target distribution
• Once there, explore efficiently

• Different ways to check
• Trace plots
• Convergence diagnostics (n_eff, Rhat)
• Special warnings (divergent transitions)

Check the chains
• Trace plot: Plot of sequential samples in chain
• Shows some problems, but not all
• Want to see “hairy caterpillar”

warmup

500 1000 1500 2000

8.
8

9.
0

9.
2

9.
4

9.
6

n_eff = 267a

500 1000 1500 2000

−0
.4

−0
.2

0.
0

n_eff = 265bR

500 1000 1500 2000

−2
.5

−2
.0

−1
.5

n_eff = 296bA

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

n_eff = 294bAR

500 1000 1500 2000

0.
80

0.
90

1.
00

1.
10

n_eff = 471sigma

500 1000 1500 2000

8.
8

9.
0

9.
2

9.
4

9.
6

n_eff = 267a

500 1000 1500 2000

−0
.4

−0
.2

0.
0

n_eff = 265bR

500 1000 1500 2000

−2
.5

−2
.0

−1
.5

n_eff = 296bA

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

n_eff = 294bAR

500 1000 1500 2000

0.
80

0.
90

1.
00

1.
10

n_eff = 471sigma

“Hairy caterpillar
ocular inspection test”

Warmup

• What is “warmup”?
• Adaptation to posterior for efficient sampling

• Figures out good step size
• Samples during warmup NOT from posterior
• Automatically discarded by precis/summary and

other functions
• Warmup is NOT “burn in”

warmup

500 1000 1500 2000

8.
8

9.
0

9.
2

9.
4

9.
6

n_eff = 267a

500 1000 1500 2000

−0
.4

−0
.2

0.
0

n_eff = 265bR

500 1000 1500 2000
−2

.5
−2

.0
−1

.5

n_eff = 296bA

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

n_eff = 294bAR

500 1000 1500 2000

0.
80

0.
90

1.
00

1.
10

n_eff = 471sigma

Convergence diagnostics
• n_eff: “effective” number of samples

• n_eff/n < 0.1, be alarmed
• R-hat

• R-hat: crudely, ratio of variance between chains to
variance within chains

• Should approach 1
• Both may mislead

A wild chain
• Two observations: {–1,1}
• Estimate mean and standard deviation

−

−

A wild chain
−

−

−

−

A wild chain

−

−

−

−

• What the what is a divergent transition?
• Hamiltonian approximation “broke”
• Chain has trouble exploring some part of posterior

Figure 9.9

200 400 600 800 1000

0
10
00
0

30
00
0

n_eff = 57sigma

200 400 600 800 1000

-2
00
0

0
10
00

n_eff = 32alpha

200 400 600 800 1000

1
2

3
4

5
6

7

n_eff = 317sigma

200 400 600 800 1000

-4
-2

0
2

4
6

n_eff = 284alpha

∼ (µ,σ)

µ = α

α ∼ (,)

σ ∼ ()

A wild chain

• Problem is flat priors
• Flat means flat forever
• Much probability out to thousands
• Also a problem in BUGS/JAGS

• Fix with weakly informative priors

200 400 600 800 1000

0
10
00
0

30
00
0

n_eff = 57sigma

200 400 600 800 1000

-2
00
0

0
10
00

n_eff = 32alpha

200 400 600 800 1000

1
2

3
4

5
6

7

n_eff = 317sigma

200 400 600 800 1000

-4
-2

0
2

4
6

n_eff = 284alpha

∼ (µ,σ)

µ = α

α ∼ (,)

σ ∼ ()

200
400

600
800

1000

0 10000 30000

n_eff = 57
sigm

a

200
400

600
800

1000

-2000 0 1000

n_eff = 32
alpha

200
400

600
800

1000

1 2 3 4 5 6 7

n_eff = 317
sigm

a

200
400

600
800

1000

-4 -2 0 2 4 6

n_eff = 284
alpha

∼
(µ
,σ

)

µ
=

α

α
∼

(
,

)

σ
∼

(
)

A tame chain

-15 -10 -5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

alpha

D
en
si
ty

posterior

prior

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

sigma

D
en
si
ty

α σ

α σ

α
σ

Figure 9.9

200 400 600 800 1000

0
10
00
0

30
00
0

n_eff = 57sigma

200 400 600 800 1000

-2
00
0

0
10
00

n_eff = 32alpha

200 400 600 800 1000

1
2

3
4

5
6

7

n_eff = 317sigma

200 400 600 800 1000

-4
-2

0
2

4
6

n_eff = 284alpha

∼ (µ,σ)

µ = α

α ∼ (,)

σ ∼ ()

A tame chain

Even with only 2 observations, these priors have no effect on
inference! Except to allow you to make inferences...

-15 -10 -5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

alpha

D
en
si
ty

posterior

prior

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

sigma
D
en
si
ty

α σ

α σ

α
σ

Figure 9.10

The Folk Theorem of
Statistical Computing
“When you have computational
problems, often there’s a problem
with your model.”

–Andrew Gelman

Unidentified chains

’

∼ (µ,σ)

µ = α + α

σ ∼ ()

α α

’

∼ (µ,σ)

µ = α + α

σ ∼ ()

α α

’

∼ (µ,σ)

µ = α + α

σ ∼ ()

α α

Figure 9.11

200 400 600 800 1000

0.
9

1.
1

1.
3 n_eff = 5sigma

200 400 600 800 1000

-5
00

0
50
0

n_eff = 2a2

200 400 600 800 1000

-5
00

0
50
0

n_eff = 2a1

200 400 600 800 1000

0.
9

1.
1

1.
3

n_eff = 287sigma

200 400 600 800 1000

-2
0

0
10

20

n_eff = 244a2

200 400 600 800 1000

-2
0

0
10

20

n_eff = 245a1

Unidentified chains

Figure 9.11

200 400 600 800 1000

0.
9

1.
1

1.
3 n_eff = 5sigma

200 400 600 800 1000

-5
00

0
50
0

n_eff = 2a2

200 400 600 800 1000

-5
00

0
50
0

n_eff = 2a1

200 400 600 800 1000

0.
9

1.
1

1.
3

n_eff = 287sigma

200 400 600 800 1000

-2
0

0
10

20

n_eff = 244a2

200 400 600 800 1000

-2
0

0
10

20

n_eff = 245a1

Homeward

• Updated book PDF (20 Jan) & rethinking 1.82

• data(Wines2012): Interactions and Markov chains

• Next week:
Maximizing Entropy for Inferential Justice
Generalized Linear Models (GLMs)

