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Computing the posterior

1. Analytical approach (often impossible)
2. Grid approximation (very intensive)
3. Quadratic approximation (limited)
4. Markov chain Monte Carlo (intensive)



King Markov



The Metropolis Archipelago



Contract: King Markov must visit each island 
in proportion to its population size.

Here’s how he does it...



(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.
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(2) Find population of proposal island.
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(5) Repeat from (1)



(2) Find population of proposal island.

1 2 3 4 5 6 7

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.
(4) Move to proposal, with probability = p5

p4(5) Repeat from (1)

This procedure ensures visiting each island in 
proportion to its population, in the long run.



Markov chain Monte Carlo

• Markov chain Monte Carlo (MCMC)
• Understand the approach
• Meet different algorithms

• Interfaces to MCMC: Stan & ulam
• How to sample responsibly
• How to recognize and fix problems



Metropolis algorithm
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Markov’s chain of visits
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Markov’s chain of visits

• Converges to correct proportions, 
in the long run

• No matter which island starts
• As long as proposals are symmetric
• Example of Metropolis algorithm 2 4 6 8 10
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Metropolis and MCMC

• Usual use is to draw samples from a 
posterior distribution
• “Islands”: parameter values
• “Population size”: proportional to 

posterior probability
• Works for any number of dimensions 

(parameters)
• Works for continuous as well as 

discrete parameters



Metropolis and MCMC
• Metropolis: Simple version of Markov chain Monte 

Carlo (MCMC)
• Metropolis, Rosenbluth, Rosenbluth, Teller, and 

Teller (1953)

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087 

instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 

THE JOURNAL OF CHEMICAL PHYSICS 

paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 

VOLUME 21, NUMBER 6 JUNE, 1953 

Equation of State Calculations by Fast Computing Machines 
NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER, 

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 

AND 

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois 
(Received March 6, 1953) 

A general method, suitable for fast computing machines, for investigatiflg such properties as equations of 
state for substances consisting of interacting individual molecules is described. The method consists of a 
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere 
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared 
to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 



MANIAC:
Mathematical Analyzer, Numerical Integrator, and Computer

MANIAC:
1000 pounds
5 kilobytes of memory
70k multiplications/sec

Your laptop:
4–7 pounds
2–8 million kilobytes
Billions of multiplications/sec



Metropolis and MCMC

• Metropolis: Simple version of Markov 
chain Monte Carlo (MCMC)

• Chain: Sequence of draws from 
distribution

• Markov chain: History doesn’t matter, 
just where you are now

• Monte Carlo: Random simulation
Andrei Andreyevich Markov

(Ма́рков)
(1856–1922)



Why MCMC?
• Sometimes can’t write an integrated posterior
• Even when can, often cannot use it
• Many problems are like this: Multilevel models, 

networks, phylogenies, spatial models
• Optimization not a good strategy in high 

dimensions — must have full distribution
• MCMC is not fancy. It is old and essential.



MCMC strategies
• Metropolis: Granddaddy of them all
• Metropolis-Hastings (MH): More 

general
• Gibbs sampling (GS): Efficient 

version of MH
• Metropolis and Gibbs are “guess 

and check” strategies
• Hamiltonian Monte Carlo (HMC) 

fundamentally different
• New methods being developed, but 

future belongs to the gradient
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Metropolis gets stuck
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small steps, slow walk bigs steps, low accept rate



Hamiltonian Monte Carlo

• Problem with Gibbs sampling (GS)
• High dimension spaces are concentrated
• GS gets stuck, degenerates towards 

random walk
• Inefficient because re-explores

• Hamiltonian dynamics to the rescue
• represent parameter state as particle
• flick it around frictionless log-posterior
• record positions
• no more “guess and check”
• all proposals are good proposals

William Rowan Hamilton
(1805–1865)

Commemorated on Irish 
Euro coin



Hamiltonian parable
• King Monty’s kingdom is a narrow valley N–S
• Population distribution inversely proportional to 

altitude
• Algorithm:

• Start driving randomly N or S at random speed
• Car speeds up as it goes downhill
• Car slows as it goes uphill, might turn around
• Drive for pre-specified duration, then stop
• Repeat

• Stopping positions will be proportional to 
population

North South
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• Car slows as it goes uphill, might turn around
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Hamiltonian Monte Carlo
• Location is parameter values
• Really simulate motion on frictionless surface
• Surface is minus-log-posterior
• Series of simulations, each starting from previous
• Stopping points comprise valid MCMC samples
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Figure 9.6

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

1

2

34

2D Gaussian, L = 11

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

mux

m
uy

2D Gaussian, L = 28

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

1

2

3

4

Posterior correlation -0.9

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

a1

a2

50 trajectories

∑
( |µ , ) +

∑
( |µ , ) + (µ | , . ) + (µ , , . )



https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/


https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/


Hamiltonian Monte Carlo

• Why does HMC work much better?
• Doesn’t get stuck — follows gradient
• Extra variables (momentum, energy) 

provide diagnostics
• But also requires more

• Gradients — curvature of log-posterior
• “Mass” of particle
• Number of leaps in a single trajectory
• Size of individual leaps

• These need to be tuned right
• Gradients are unique to each model
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The U-Turn Problem
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Stan is NUTS

• No U-Turn Sampler (NUTS2): Adaptive 
Hamiltonian Monte Carlo

• Implemented in Stan (rstan: mc-stan.org)
• Stan figures out gradient for you

• autodiff, back-propagation

Formula Stan
model

C++
model

Reusable
Sampler
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Stanislaw Ulam (1909–1984)

mc-stan.org



Stanislaw Ulam and his daughter Claire with MANIAC
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HMC Praxis

• Back to terrain ruggedness

• Re-approximate posterior

• Practical details

• What to expect from healthy 
Markov chains



One hand QUAP’ing



Hamiltonian Flows
• Interface to Stan: ulam



Hamiltonian Flows
• What happens when you use ulam?

• Translates formula into raw Stan model code
• Stan then builds a custom NUTS sampler
• Sampler runs
• Samples fed back to R



Hamiltonian Flows

• Num samples = total minus warmup
• Default warmup is half



Hamiltonian Flows

• n_eff: number of effective samples
• can be larger than actual samples!

• Rhat: Convergence diagnostic — “1” is good



Figure 9.7 
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Check the chains

• Sometimes it doesn’t work
• Good chains:

• Converge to same target distribution
• Once there, explore efficiently

• Different ways to check
• Trace plots
• Convergence diagnostics (n_eff, Rhat)
• Special warnings (divergent transitions)



Check the chains
• Trace plot: Plot of sequential samples in chain
• Shows some problems, but not all
• Want to see “hairy caterpillar”

warmup
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Warmup

• What is “warmup”?
• Adaptation to posterior for efficient sampling

• Figures out good step size
• Samples during warmup NOT from posterior
• Automatically discarded by precis/summary and 

other functions
• Warmup is NOT “burn in”
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Convergence diagnostics
• n_eff: “effective” number of samples

• n_eff/n < 0.1, be alarmed
• R-hat

• R-hat: crudely, ratio of variance between chains to 
variance within chains

• Should approach 1
• Both may mislead



A wild chain
• Two observations: {–1,1}
• Estimate mean and standard deviation

−

−



A wild chain
−

−

−

−



A wild chain

−

−

−

−

• What the what is a divergent transition?
• Hamiltonian approximation “broke”
• Chain has trouble exploring some part of posterior



Figure 9.9
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A wild chain

• Problem is flat priors
• Flat means flat forever
• Much probability out to thousands
• Also a problem in BUGS/JAGS

• Fix with weakly informative priors
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A tame chain
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Figure 9.9
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A tame chain

Even with only 2 observations, these priors have no effect on 
inference! Except to allow you to make inferences...
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Figure 9.10



The Folk Theorem of 
Statistical Computing
“When you have computational 
problems, often there’s a problem 
with your model.”

–Andrew Gelman



Unidentified chains
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Figure 9.11
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Unidentified chains



Figure 9.11
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Homeward

• Updated book PDF (20 Jan) & rethinking 1.82

• data(Wines2012): Interactions and Markov chains

• Next week:
Maximizing Entropy for Inferential Justice
Generalized Linear Models (GLMs)


