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ABSTRACT

Hamiltonian Monte Carlo (HMC) is a powerful tool for Bayesian computation. In comparison with the
traditional Metropolis—Hastings algorithm, HMC offers greater computational efficiency, especially in higher
dimensional or more complex modeling situations. To most statisticians, however, the idea of HMC comes
from a less familiar origin, one that is based on the theory of classical mechanics. Its implementation,
either through Stan or one of its derivative programs, can appear opaque to beginners. A lack of under-
standing of the inner working of HMC, in our opinion, has hindered its application to a broader range
of statistical problems. In this article, we review the basic concepts of HMC in a language that is more
familiar to statisticians, and we describe an HMC implementation in R, one of the most frequently used
statistical software environments. We also present hmclearn, an R package for learning HMC. This
package contains a general-purpose HMC function for data analysis. We illustrate the use of this package
in common statistical models. In doing so, we hope to promote this powerful computational tool for
wider use. Example code for common statistical models is presented as supplementary material for online
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publication.

1. Introduction

Hamiltonian Monte Carlo (HMC) is one of the newer Markov
chain Monte Carlo (MCMC) methods for Bayesian compu-
tation. An essential advantage of HMC over the traditional
MCMC methods, such as the Metropolis—-Hastings algorithm,
is its greatly improved computational efficiency, especially in
higher dimensional and more complex models. But despite the
method’s computational prowess and the existence of excel-
lent introductions (Neal 2011; Betancourt 2017), practitioners
still face daunting challenges in applying the method to their
own applications. Difficulties mainly arise in three areas: (i)
unfamiliarity with the theory behind the algorithm, (ii) lack of
understanding of how the existing software works, (iii) inability
to tune the HMC parameters. These difficulties have limited the
use of HMC to those who understand the theory and have the
programming skills to implement the algorithm. But it does not
have to be so.

The emergence of modern Bayesian software such as Stan
(Carpenter et al. 2017) has, to some extent, alleviated these
difficulties. Stan is a powerful and versatile programming lan-
guage that has a syntax similar to that of WinBUGS, but uses
HMC instead of Gibbs sampling to generate posterior samples
(Gelman, Lee, and Guo 2015). Stan translates its code to a lower-
level language to maximize speed and efficiency. Importantly, it
automates the tuning of HMC parameters and thus significantly
reduces the burden of implementation. For R and Python users,
packages have been created that allow Stan be called from those
languages. For people who are familiar with WinBUGS and
comfortable with programming in probabilistic terms, Stan is

an ideal choice for HMC implementation. But for beginners
who want to learn HMC, Stan can come across as a “black box”.
Other high-performance software, such as PyMC and Edward
(Salvatier, Wiecki, and Fonnesbeck 2016; Tran et al. 2016),
present similar challenges. While scalability and efficiency are
often the foremost considerations in software development, a
good understanding of the methodology is more essential to
learners, as it instills confidence in the practical use of new
methods.

The objectives of the current article are largely pedagogical,
that is, helping practitioners learn HMC and its algorithmic
ingredients. Toward that end, we developed a general-purpose
R function hme for the fitting of common statistical models.
We also present details of HMC parameter tuning for those
who are interested in writing and implementing their own
programs. Multiple examples are presented, with accompany-
ing R code. We have assembled all of the learning material,
including the necessary HMC functions, example code, and
data in an R package, hmclearn, for convenience of the
readers.

2. Markov Chain Monte Carlo: The Basics

MCMC is a broad class of computational tools for integral
approximation and posterior sample generation. In Bayesian
analysis, MCMC algorithms are primarily used to simulate sam-
ples for approximation of the posterior distribution.

In Bayesian analysis, estimation and inference of the param-
eter of interest are made based on the observed data D together
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with the a priori information that one has on the parameters
of interest @ = (01,...,0,) T € Rk The posterior distribution
f(0]D) combines both the data and prior information in accor-
dance to the Bayes formula, and is proportional to the product
of the likelihood function f(D|@) and the prior density f(8)
(Carlin and Louis 2008) ,

F(DIO)f ()
[f(DI6)f(8)do’

o f(D16)f(0).

f@O|D) =

The integral in the denominator is usually difficult to evalu-
ate. But since the denominator is constant with respect to 8, one
could work with the unnormalized posterior f(D|0)f (). In the
absence of an explicit expression of the posterior, approximating
it with simulated samples following f (#|D) becomes a desirable
alternative.

2.1. Metropolis-Hastings

Metropolis algorithm is the first widely used MCMC method
for generating Markov Chain samples following f(6|D). The
method originated from a physics application in the 1950s
(Metropolis et al. 1953), and was further extended nearly two
decades later by Hastings (1970), thus giving rise to the name
of Metropolis-Hastings (MH) algorithm. We begin with a brief
description of MH, as HMC was built on a similar concept.

MH generates a sequence of values of @ that form a Markov
chain, whose values can be used to approximate a posterior
density f(8|D). For brevity, we drop D from the expression and
write the posterior simply as f(#). Values in the Markov chain
0" areindexed by t = 0, 1,.., N, where 8*) is a user or program-
specified starting value.

MH defines a transition probability that assures the Markov
chain is ergodic and satisfies detailed balance and reversibility
(Chib and Greenberg 1995). These technical conditions are put
in place to ensure the chain samples from the full support of 8
without bias.

In MH, values of ) in the chain are defined in part by a
proposal density g(0¥R°F|9'~1), where °RO? is a proposal for
the next value in the chain. This proposal density is conditioned
on the previous value '~V A variety of proposal functions can
be used, with random walk proposals being the most common
choice.

Algorithm 1 Metropolis-Hastings

1: procedure MH(O(O),f(O), q(0(1) 10@),N)
2 Calculate f CAR)

3: fort=1,...,Ndo
4
5

0PROP (_q(oPROPw(tfl))
u<U(,1)

. _ . f(oPROP)q(o(tfl)lopROP)
¢ @ =mn (1’ FOTD)g@" ")
7: Ifa < u, then 8 « @PROP Otherwise, ) «
9D
8: end for
9: return V.9

10: end procedure

In MH, a proposal is accepted with probability

o — min (1 f(OPROP)q(a(t—l)|0PROP)
- ’f(o(tfl))q(ePROPw(tfl)) ’

When is symmetric ie., q(O(t_l)wPROP )
q(OPROP |0¢~D), this simplifies to

PROP
o = min l,f—(a ) ,
fOY)

which is used in the original Metropolis algorithm.

The denominator in the posterior is constant with respect to
0. As such, the ratio of posterior densities at two different points
0PROP and 9~V can be compared even when the denomina-
tor is unknown, with the denominators being cancelled out.
Because a derivation of the full posterior distribution (numera-
tor and denominator) is not necessary to implement MH (and
HMC, as we will see), data analysts have considerable flexibility
to select models of their liking.

The acceptance rate « in (1) is an important gauge of the
efficiency of an MH algorithm. A careful examination of s roles
gives a more intuitive understanding of the algorithm:

1. When f(0F%°P) > £(@"~D), the proposal f(#PROF) repre-
sents a “more likely” value than the previous value =1, as
quantified by the density functions. When this occurs, the
proposal is always accepted (i.e., with probability 1).

2. When f (6PROPy < f 0D), the proposal 0PROP has a lower
density in comparison to the previous value, and we accept
the proposal at random with probability « € (0, 1), which
indicates the relative likelihood of observing 8*ROF from f, as
compared to '~V The larger the o, the greater the chance of
accepting 0TROP 1f the proposal is not accepted, the proposal
will be discarded and the chain will remain in place 8 :=
0D and we will start with a new proposal.

(1)

With such a scheme, the algorithm frequents regions of
higher posterior density, while occasionally visiting the low den-
sity areas (e.g., tails in one-dimensional situations). Provided
the algorithm satisfies the conditions for ergodicity (Tierney
1994) and runs a sufficient number of iterations, the empirical
distribution of the MCMC chain samples should approximate
the true posterior density. The simulated values can therefore
be used for estimation and inference based on the posterior
distribution. See Carlin and Louis (2008), Chib and Greenberg
(1995), and Gelman et al. (2013) for additional details on MH.

2.2. Limitations of Metropolis-Hastings

The theoretical requirements for using MH are quite minimal,
making it an attractive choice for Bayesian inference. Limi-
tations of MH are primarily computational. With randomly
generated proposals, it often takes a large number of iterations
to get into areas of higher posterior density. Even efficient MH
algorithms sometimes accept less than 25% of the proposals
(Roberts et al. 1997). In lower dimensional situations, increased
computational power may compensate the lower efficiency to
some extent. But in higher dimensional and more complex
modeling situations, faster computers alone are rarely sufficient
to overcome the challenge.



Gibbs sampling can be a viable and more efficient alterna-
tive to MH in some situations (Geman and Geman 1984). In
fact, several popular software platforms, such as WinBUGS and
JAGS, use Gibbs to generate posterior samples (Lunn et al. 2000;
Plummer 2003). Gibbs’ requirement for explicitly expressed
conditional posterior densities, however, has prevented it from
being used in many practical situations. In addition to this
restriction, Gibbs also has its own efficiency limitations (Robert
2007). It is in this context that HMC emerges as a preferred
alternative for Bayesian analysis.

3. Hamiltonian Monte Carlo

HMC improves the efficiency of MH by employing a guided
proposal generation scheme. More specifically, HMC uses the
gradient of the log posterior to direct the Markov chain toward
regions of higher posterior density, where most samples are
taken. As a result, a well-tuned HMC chain will accept propos-
als at a much higher rate than the traditional MH algorithm
(Roberts et al. 1997).

It is important to note that although the HMC algorithm
frequently samples in regions of higher density, referred to as
the typical set (Betancourt 2017), it still samples the tail areas
properly. While both MH and HMC produce ergodic Markov
chains, the mathematics of HMC is substantially more complex
than that of MH. In this article, we provide a less technical
introduction of the ideas behind HMC. More technical expo-
sitions can be found elsewhere (Neal 2011; Betancourt 2017).

(a)

s -4

(c)

\

(0)
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3.1. Theldea

The methods one uses to generate proposals strongly influences
the efficiency of MCMC. Suppose f(0) is a one-dimensional
posterior density function, and —logf(6) assumes the shape
of an inverse bell-shaped curve as depicted by Figure 1. To
generate 6 in a region of high posterior density, one needs to
sample 6 in the region corresponding to the lower values of
—log f(0); the region can be reached with the guidance of the
gradient of —log (). In a sense, the approach is analogous to
the movement of a hypothetical object on a frictionless curve,
where the object traverses and lingers at the bottom of the
valley while occasionally visiting the higher grounds on both
sides. In classical mechanics, such movements are described
by the Hamiltonian equations, where the exchanges of kinetic
and potential energy dictate the object’s location at any given
moment.

In a Hamiltonian system, the horizontal and vertical posi-
tions are given by (6,p). In MCMC, we are interested in 6.
The parameter p, which is often referred to as the momentum,
is an auxiliary quantity that we use to simulate 6 under the
Hamiltonian equations.

3.2. The Hamiltonian Equations

We introduce HMC in a generic MCMC setting, where @ follows
the posterior density (@) of interest, and the momentum p

(b)

Y/

(d)

Figure 1. One-dimensional HMC example—movement of an object on a smooth, frictionless curve. (a) We apply a force with randomly generated direction and strength
to the object. This object acquires a certain amount of kinetic energy, which makes it move in the direction of the applied force. The momentum, proportional to the object’s
velocity, changes throughout the path of the curve. When the object moves up along the curve, the velocity of the object and its momentum decrease. Its kinetic energy
converts to potential energy, while the total energy remains constant. (b) The object will stop at a point when all of its kinetic energy is converted to potential energy. The
potential energy then makes the object move in the opposite direction, converting its potential energy back to kinetic energy. (c) At the lowest point of the curve, all of the
energy is in the kinetic form (peak velocity/momentum), which pushes the object up to the left side of the curve. (d) As the object goes up on the curve, its kinetic energy
again converts to potential energy, until all is in the form of potential energy. Then, the object would stop and then slide back as guided by its potential energy. Since the
surface is frictionless, the total energy remains constant throughout these repeated movements.
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is generated from a parametric distribution. The momentum
matches the dimensionality of # as a vector of length k.

We write the Hamiltonian function as H(@, p), which con-
sists of potential energy U (0) and kinetic energy K(p): H(0, p) =
U(#) + K(p), wherepand 0 € Rk,

In statistical applications of MCMC, we are primarily inter-
ested in generating @ from a given distribution f(@). To do
so, we let U(@) := —logf(f). Such a designation would
ensure @ generated from the Hamiltonian function follows the
desired distribution. For momentum, we typically assume p ~
Nk (0, M), where M is a user-specified covariance matrix.

Under this formulation, we have

1
H(0,p) = —logf(0) + EpTM’lp. )

Over time, HMC travels on trajectories that are governed
by the following first-order differential equations, known as the
Hamiltonian equations

dp  0H®,p) _ dU®)

_ = Vy logf(6),

o 20 T o logf(0) “
d6 _ 9H®.p) _ K@) _, 1

a  dp  dp b

where Vp log f (0) is the gradient of the log posterior density. A
solution to the Hamiltonian equations is a function that defines
the path of (#,p) from which specific values of @ could be
sampled. Within an MCMC iteration, we sample a value 6 from
this path. The randomness of the MCMC samples comes from
the momentum p ~ Ni(0,M) and the specific # value we
choose.

3.3. Solving the Hamiltonian Differential Equations

Solving the Hamiltonian equations, therefore, becomes a critical
step in HMC simulation. A standard approach for solving dif-
ferential equations is Euler’s method, which produces a discrete
function that approximates the solution at each time ¢. Values of
(0, p) that satisty the Hamiltonian equations would be legitimate
values for the HMC. But as Neal (2011) have noted, errors tend
to accumulate in Euler’s method, especially after a larger number
of steps. In HMC, one often has to take a larger number of steps
to ensure the new proposal is sufficiently far from the location
of the previous sample.

The leapfrog method is a good alternative to the standard
Euler’s method for approximating the solutions to Hamiltonian
equations (Ruth 1983). The leapfrog algorithm modifies Euler’s
method by using a discrete step size € individually for p and 0,
with a full step € in 8 sandwiched between two half-steps € /2
for p,

p(t+¢€/2) = p(t) + (€/2) Vg log f(0(1)),
O(t+¢) =0(t) + M Ip(t +€/2), (4)
p(t+e) =p(t+e€/2)+ (e/2)Vglogf (B (t + €)).

For HMC, multiple leapfrog steps are typically required to
move a sufficient distance to the next proposal. Research has
shown that discrete approximations remain accurate, even after
many steps. The stability of the leapfrog algorithm is due to
the leapfrog’s symplectic property. (Channell and Scovel 1990;

Betancourt 2017). Symplecticity ensures that the volume of the
support is preserved when mapping from one point to another,
such as through one or more consecutive iterations of the
leapfrog algorithm (Neal 2011).

For a given momentum vector p within an HMC iteration,
the path defined by the Hamiltonian equations is determinis-
tic. Proposals generated from an exact solution of these equa-
tions, if achievable, would always be accepted. But since our
solution from the leapfrog is an approximation, a Metropolis
style accept/reject step is added to ensure the newly generated
proposal does not deviate too far from the specified Hamiltonian
H(#,p). The acceptance rate of HMC proposals is therefore less
than 100%, but generally higher than that of the Metropolis
algorithm.

3.4. HMC Algorithm

The flowchart in Figure 2 shows the key steps in HMC. Ini-
tial values for # and p are required to start the algorithm.
With 8© and p(© specified, the leapfrog algorithm is used to
find approximate solutions to the Hamiltonian equations. The
leapfrog solutions define the path of (6, p) over time within an
iteration.

Typically, multiple steps, each of length €, are taken to gen-
erate an HMC proposal. Parameter L represents the number of
steps. While L is often fixed to a positive integer value, some
randomness can be introduced to ensure a valid exploration of
the space of (8, p). A generic HMC is given in Algorithm 2.

Algorithm 2 Hamiltonian Monte Carlo

1: procedure HMC(0?,logf(#), M, N, ¢, L)

2 Calculate log f (0«’))

3 fort=1,...,Ndo

" p < N(0,M)

5: 09 — 04D 90D p<—p

6 fori=1,....,Ldo _

7 0,p < Leapfrog(8, p, e, M)

8 end for

9: o < min <1, exP(lOg{(@;%ﬁTM_lf’) )

exp(logf (0 )—1pT™M~1p)

10: With probability o, #) « 6 and p®® < —p
11: end for
12: return 0(1),...,0(N)

13: function LEAPFROG(0%, p*, €, M)

14 B < p* + (¢/2)Vs logf(8%)
15: 0 < 60*+eM'p 5
16: P < P+ (e/2)Vylogf(0)

17: return 0, p

18: end function

19: end procedure

As with other valid MCMC algorithms, HMC’s transition
probability is designed to meet the theoretical requirements for
detailed balance and reversibility. These conditions ensure that
our HMC samples provide a valid representation of the poste-
rior distribution. If we denote the transition probability from
00 to 9UFD 4 T(O(t),O(t“)), then detailed balance requires
that f(@@)T (0D, 00Dy = F(OFD)T OV, 0?)). The HMC
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v
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Leapfrog Algorithm
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Simulation Complete
0 =(e4..,.0M

Figure 2. Main steps of the Hamiltonian Monte Carlo Method.

transition probability includes two components to ensure that
detailed balance and reversibility hold true:

1. the accept/reject step, and
2. the negation of the momentum after the final leapfrog step.

The negated momentum illustrates the reversibility of HMC
transitions, which can be demonstrated by stepping through the
leapfrog from the proposed state to the original state. Tierney
(1994) described the theoretical requirements for MCMC algo-
rithms in general, while Betancourt (2017) provided a detailed
exposition specific to HMC.

In Section 4, we describe a general-purpose function hmc in
our proposed package. Within the package, the gradient func-
tions for commonly used generalized linear mixed effect models
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under the default priors are provided. The hme function can also
take user-defined posterior density and gradient functions for
non-standard statistical models. In situations where analytical
derivation of gradient functions is infeasible, one could con-
sider using numerical auto-differencing functions. Automated
differencing libraries capable of calculating the gradient exactly
such as the Stan math library (Carpenter et al. 2015), also called
Autodiff, are appropriate for direct use in HMC applications.

3.5. HMC Tuning for Improved Efficiency

The efficiency of an HMC algorithm can be improved
through parameter tuning and reparameterization. HMC tun-
ing involves selection and adjustment of the various HMC
parameters. Two parameters that need to be specified are the
step size € and the number of leapfrog steps L. Elements in
the covariance matrix M may also be adjusted from the default
identity matrix for efficiency improvement.

It is generally a good practice to set € to a smaller value
relative to the magnitude of the parameter of interest. A smaller
€ results in closer approximations and thus higher acceptance
rates. But a small € must be coupled with a large L to ensure
the trajectory length €L is large enough to move the simulated
parameter to a distant point in the distribution. On the other
hand, if €L is too large the trajectory is likely to circle back,
causing waste in simulation. To tune € and L is to find the
right combinations of these values, which are usually chosen
via monitoring the acceptance rate. Neal (2011) suggested an
optimal acceptance rate is approximately 65%. At the same time,
it is often helpful to examine the trace plots of the MCMC
samples for signs of autocorrelation. Slow-moving chains with
stronger autocorrelation often indicate insufficient e L. While €
and L can be tuned jointly, most analysts choose to select the
step size first, then under a given step size, they fine-tune the
number of steps per leapfrog L.

Additional adjustments may be made to the tuning param-
eters beyond these basic steps. For example, one could use
different values of € for each of the k parameters in 8 to increase
the sampling efficiency. The hme function in hmclearn allows
setting € to a vector instead of a single number to give analysts
the flexibility to use different step sizes for different parameters.
The parameter for the number of steps L must be a natural
number. However, randomly chosen L could be used to guard
against periodicity of the Markov chain. The step size € may also
be randomized. In the hmc function, random € and L can be
automatically applied via parameter setting. A useful algorithm
known as the No U-Turn Sampler (NUTS) automatically selects
L for each sample; NUTS is a commonly used alternative to
manual parameter tuning (Hoffman and Gelman 2014).

The efficiency of sampling in the standard HMC algorithm
can also be improved for multivariate models when the parame-
ters have an orthogonal basis. One common method of ensuring
an orthogonal basis involves applying QR decomposition (Voss
2013) . In many statistical models, especially linear models, the
design matrix helps to define the model itself and is central to the
model fitting computation. In HMC, QR decomposition is often
applied to the design matrix to create the orthogonal basis for
sampling. Applying this transformation in practice can improve
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the computational efficiency of HMC for many models (Team
2017). After the simulation is complete, the MCMC samples are
transformed back to the original basis for inference.

4. A Package for Learning HMC

HMC presents considerable challenges to beginners attempting
to learn the algorithm. First, the method can be difficult to com-
prehend because its idea originated from physics applications of
the Hamiltonian equations. Second, it is often difficult to learn
the inner working of HMC from programs such as Stan, because
they are not designed as teaching tools. In fact, Stan specifies
models in a probabilistic syntax and shields users from the actual
HMC steps.

In this article, we present an R package hmclearn to
provide users with the software tools to learn the intricacies
of the HMC algorithm, through explicit specification of log
posterior and gradient functions, as well as parameter tuning. It
is designed to give user a hands-on experience for implementing
HMC analysis for a broad class of statistical models. Once users
have understood and mastered the essential HMC steps, they
could go on to write their own code for specific applications.
To download hmclearn, go to https://cran.r-project.org/web/
packages/hmclearn/index.html.

The core function in hmclearn is hme, which is a general-
purpose function for MCMC sample generation by using the
HMC method. This function takes user-defined log posterior
and gradient functions as inputs and produces MCMC samples.
Here we do not ask for an explicit specification of prior (@) as
an input function. Instead, we let users define their log posterior
logf(@|y) = logf(y|60) + logf(#), which includes f(#). Such a
design reduces the number of required input functions, while
preserving users’ flexibility in choosing different priors.

Other input parameters to hmc include the number of sam-
ples N, the step size €, the number of leapfrog steps L, and the
Mass matrix M. These are the essential elements to start an
HMC simulation, but the user will typically need to adjust at
least some of these parameters to tailor the simulation to their
specific applications. Users are required to provide their own
starting values for @ when using the hme function for their own
applications. Examples of log posterior and gradient functions
are provided in hmclearn for various generalized linear mixed
effect models, which can be used as templates for less standard
models.

Running multiple MCMC chains is often desirable to deter-
mine if each chain converges to the same distribution of 6.
Since modern computers almost universally have multiple core
processors, parallel processing can be an efficient way to run
multiple chains at the same time. To that end, hmclearn
includes parameters to enable parallel processing as well as
multiple chains.

Finally, a variety of Bayesian graphical functions are provided
based on the bayesplot package (Gabry and Mahr 2016).
Functionalities incorporated in hmclearn include trace plots,
histograms, density plots, and credible interval plots. The inte-
grated functions comprise the core diagnostic plotting functions
typical for MCMC applications. Additional diagnostics can be
programmed directly or called based on the output of the hmc
function.

5. HMC in Statistical Models
5.1. A General Process

In this section, we discuss the general steps of HMC implemen-
tation in statistical models. We describe the process through
examples of generalized linear models. The major steps required
to fit a statistical model are summarized in Figure 3. Fol-
lowing the steps illustrated in the diagram, one could gen-
erate HMC samples with user-specified posterior and gradi-
ent functions, by using the hmc function in the hmclearn
package.

Specify Model
glE()] = X©

l

Derive Log Likelihood
log f(¥|©)

i

Specify Priors
m(0)

!

Derive Log Posterior
log f(@ly) =log f(¥1©) + logm(©)

Support of ® € R?

Y Y

Transform © to R
E.g.log(")

,, l

No parameter
transformation

h 4
logPOSTERIOR Specify Log Posterior
Function log f(©ly)
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¥
giogPOSTER.'.OR Derive Gradient of Log Posterior
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|
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| HMC: Run N Simulations I
|
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Simulation Complete
0= (0%..,0M)

Figure 3. Major steps of HMC implementation.
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5.2. Examples

We present three examples to illustrate how to fit various linear
models using HMC. Our notation for these examples reflects the
programming of the sample log posterior and gradient functions
in hmclearn. This programming uses matrix and vector mul-
tiplication instead of for loops, which can be computationally
slow in R.

5.2.1. Example 1: Linear Regression
We consider a linear regression model y; = xiTﬂ + €;, where
yi is the response for the ith subject,i = 1,...,n,andy =
(1. --»yn) T is a vector of responses. The covariate values for
the ith subject are xiT = (Xi0 - - - » Xig), Where xjo is frequently
set to one as an intercept term for all subjects. We write the full
design matrixas X = (xI,...,x1)T € R"+D The regression
coeflicients for the g covariates plus an intercept are written as
B = (Bo,... ,,Bq)T. The error term for each subject is €;. All
error terms € = (€1,...,€,)] are assumed to be independent
and normally distributed with mean zero and constant variance
o2.

The log-likelihood for linear regression, omitting the con-
stants, can be written as

1
logf(y1.0?) & —nlogoe — 55 (v~ XB)T (y — XB).

We specify a multivariate normal prior for § with covariance

matrix ozI where o is a hyperparameter set by the analyst,

and an inverse gamma (IG) prior for o2. The IG prior has
hyperparameters a and b, which are also set by the analyst. We
write

B'B
f(ﬂ|a§) X exp <_E) and

2 _ ba 2\—a—1 _i
f(olla,b) = F(a)(ae) exp( 02).

€

The support of o2 is (0, 00). We apply a logarithmic transfor-
mation to expand the support to R. We have

y =logo?, o2=gly)=¢,
b? b
fylab) = o5 exp (—ay - e—y),

logf(yla,b) x —ay — be™ 7.

The log posterior is proportional to the log-likelihood plus
the log prior,

-V
logf(B.vly.X,of.a.b) o — (5 +a)y = Sy =XB)(y
ﬂT
— Xﬂ) -~ be™”.
ZO'ﬂ

The parameters of interest are defined as 6 =
(ﬁo,...,ﬁq,y)T, where k = g + 2. To fit this model using
hme, the user must provide a function for the log posterior
where the first function parameter is a vector for the parameters
of interest #. Additional function parameters can be included
for the data and hyperparameters. An example log posterior
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function for this model and specification of priors is included
in hmclearn.

The Hamiltonian function (2) is composed of the log pos-
terior and the log density function of the momentum, where
p ~ Ni(0,M). Writing the Hamiltonian function for our linear
regression model is straightforward once the log posterior is
developed,

1
H@,p)=H(B,y,p)xlogf(B, 7]y, X, Gé, a,b) + EPTM_lp'

With the Hamiltonian function explicitly defined, we can write
the Hamiltonian equations (3) for this particular model.

The steps of the leapfrog algorithm are integrated with hmc
in a self-contained function. This function requires, as an input,
a separate standalone function that returns a vector for the
gradient of the log posterior. As with the log posterior function,
the first function parameter must be a vector for 6. The gradient
functions for the model in this example are also included in
hmclearn,

Vg logf(B.yly.X,04,a,b) o e "X (y — XB) — B/0},
n
vy logf (B, vy, X, Ué,a, b) x — (E + a)

14
+ 50 -XB) (- XB)
+be 7.

We now have everything we need to solve the Hamilto-
nian equations via the leapfrog algorithm and generate samples
for the posterior f(#). The main hmc function handles the
details of the HMC sample generation process for the user.
A description of the function parameters is in Section A.1 of
the appendix. Additional programming details are provided
with the hmclearn package, including detailed vignettes with
additional examples.

For a numerical example we use the warpbreaks dataset
(Tippett 1950), which is one of the sample datasets included with
base R. In this example, we estimate the associations between the
yarn’s type of wool and tension and the number of warp breaks
per loom. We write the model as follows

Breaks; = By + B1woolB; + B,tensionM; + BstensionH;
+ B4woolB; : tensionM; + BswoolB; : tensionH;
+ €,

Breaks; and the ith row of X is x! =

where y; = ;
(1, woolB;, tensionM;, tensionH;, woolB; : tensionM;, woolB; :
tensionH;).

To fit this model using hmc, we must first specify the initial
values of 0 for the MCMC chain. The initial values are provided
as a vector of length k = 7, including 6 for § and 1 for y. We
use the default hyperparameters for the sample log posterior and
gradient functions in hmclearn, such that O’é = le3anda =
b=1le—4.

The HMC simulation takes approximately 6 sec to run on a
2015 Macbook Pro with a 2.5GHz processor. Users have a num-
ber of options to summarize and visualize the HMC samples.
The generic summary function provides quantiles from the
posterior samples in a table. Many data visualization options
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are available through direct integration with the bayesplot
package (Gabry and Mahr 2016). Graphical options for visu-
alizing the posterior samples include histograms, density plots,
and credible interval plots. General MCMC diagnostics such as
trace plots, autocorrelation plots, and R statistics are also readily
available. Additional customized analyses can be performed
using the posterior sample output from hme.

The marginal posterior sample distributions for f(6) are
found to be well-behaved and similar to frequentist estimates.
The R code for fitting the model is presented in Section A.2 of
the appendix.

5.2.2. Example 2: Logistic Regression

We consider a logistic regression
Py =1|x;,8) = [1 + exp(—xiTﬂ)]_1 , where y; is the binary
response for the ith subjecti = 1,...,mandy = (y1,...,yx) "
is a vector of responses for all subjects. The covariate values for
the ith subject are xiT = (Xi0 - - - » Xig), where xjo is frequently
set to one as an intercept term for all subjects. Frequently, x;o
is set to one for all individuals as an intercept term. We write
the full design matrix as X = (xlT, conxT e R@+HD The
regression coefficients for g covariates plus an intercept are a
vector B = (Bo, . - - ,ﬂq)T.

The log-likelihood for the logistic regression model is

model

logf(yIX, B) = BTXT(y — 1,,) — 17 log(1 + & % ) ],1u1,

where B is the regression coeflicient vector and the parameter we
intend to estimate, and [log(1 + e X B )1 indicates an n x 1
vector Vi = 1,. .., n. We specify a multivariate normal prior for
B with covariance matrix o él, where O’é is a hyperparameter set
by the analyst.

The log posterior is proportional to the sum of the log-
likelihood and log prior of 8. Excluding constants, we write the
log posterior as

logf (Bly, X, 04)

Ty T T —xTg B'B
x BIX(y — 1) — 1, [log(L + e F)]ux1 — =
2(7/3
The parameters of interest are defined as § = B =

(ﬁo,...,ﬂq)T, where k = g + 1. To fit this model using
hme, the user must provide a log posterior function containing
the parameters of interest #, the observed data, and possibly
additional hyperparameters. The log posterior function for this
model and the specification of priors are described in hmclearn.
The Hamiltonian function (2) is composed of the log pos-
terior and the log density function of the momentum p ~
Nk (0,M). Writing the Hamiltonian function for our example
model is straightforward once the log posterior is specified,

1
H(®,p) = H(B,p) o logf(Bly. X, o) + Jp'M'p.

With the Hamiltonian function explicitly defined, we can
write the Hamiltonian equations for this particular model. To
generate samples from f(6), we then use the leapfrog method to
find a discrete approximation. The leapfrog steps are integrated

with hmc in a self-contained function, using user-supplied gra-
dients.

Vg logf(Bly, X,07)
e i B

l+e_xiﬂ nx1

With the gradient function specified, we can solve the Hamil-
tonian equations via the leapfrog algorithm, and generate pos-
terior samples following f(6). The main function hmc handles
the implementation of the HMC sample generation process.

We analyzed data of 189 births at the U.S. hospital (Hosmer,
Lemeshow, and Sturdivant 1989) to examine the risk factors of
low birth weight. Data are available from the MASS package
(Venables and Ripley 2002). We prepare the data for analysis as
noted in the text.

The logistic regression model formulation for this applica-
tion is

logit [P(low; = 1)] = Bo + Biage; + Palwt; 4 Barace2black;
+ Barace2other 4 Bssmoke; + Bsptd;
+ B7hti + Pgui; + Poftv21;
+ Bioftv22plus;.

Here xl.T = (1, age;, Iwt;, race2black;, race2other;, smoke;, ptd,,
ht;, ui;, ftv21;, ftv22plus;), where the elements indicate the
mother’s age in years age, mother’s weight in pounds at last men-
strual period Iwt, black race2black and other races race2other,
smoking during pregnancy smoke, premature birth ptd, hyper-
tension ht, presence of uterine irritability ui, one physician visit
during the first trimester ftv21, and two or more physician visits
during the first trimester ftv22plus.

To fit this model using hmc, the user needs to set the initial
values for B, a vector of length k = 11, as well as the value of the
hyperparameter O’é, which we set at 1e3. In this example, we set
the step size parameter € to different values for continuous and
dichotomous variables.

The HMC simulation takes about 6sec to run on a 2015
Macbook Pro with a 2.5GHz processor. The R code for fitting the
model is presented in Section A.3 of the appendix. The marginal
posterior sample distributions for f(#) are found to be well-
behaved with central locations similar to frequentist estimates.

5.2.3. Example 3: Poisson regression with random subject
effects
Finally, we consider a random effect model for count data

glE(yilu))] = XiB + ziu;,

for i = 1,...,n subjects, where each subject’s response vector
yi = (yil,...,yl-d)T contains j = 1,...,d observations. Each
individual has a subject-specific random intercept parameter u;,
andu = (uy,...,u,)T. The fixed effects design matrix X; =
(xiTl, . ,x;)T e R¥*@HD | where the jth row of X; contains
the g + 1 covariate values of that observation, including a
common intercept. The fixed effects regression coeflicients for g
covariates and a global intercept are a vector 8 = (o, . . -, ,Bq)T.
The random intercept vector is z; = (zi1, .- -, zia)T = 14, The
distribution of y; conditional on u; follows a Poisson distribution
with a log link function, where log[E(yi|u;)] = XiB + z;u;.



The subject-level response vectors are combined in a single
vector,y = (y/,...,yDT € R"*1 The full fixed-effects design
matrix for all subjects is X = (Xi,... ,X,)T e Rrdx@tD) and
the random effects design matrix is Z = I, ® 14 € R"*"_ The
log-likelihood for the Poisson mixed effects model, omitting
constants, can be written as

T 1
logf(y|X, Z, B,u) o —1], [e"*‘f‘ﬂ+z’f”’] +yT(XB + Zu),

ndx1

where B is the fixed-effect coefficient vector, u; is the ran-

Xgﬂ-’rzzjui:l

dom intercept, and [e is an nd x 1 vector Vi =

ndx1
1,...,nandj = 1,...d. We specify multivariate normal priors

ﬂ|0§ ~ N(O, aél) and u ~ N(0,G), where oé is a hyperpa-
rameter set by the analyst and G is parameterized for efficient
Bayesian computation.

We parameterize the covariance matrix of G for efficient sam-
pling of hierarchical models such that G!/2 := AIz, where T =
(t1,...,tw)T ~ N(0,1,) (Betancourt and Girolami 2013). For
A, we assign a 2-parameter half-t prior per the recommendation
of Gelman (2006) for hierarchical models.

One final parameter transformation is necessary before
applying HMC. Since the support of A is (0,00), we apply a
logarithmic transformation to expand the support to R. We
write

& =logi, A =g_1(é) = ¢,

1 e%: 2 _(VSJFI)/Z
:b 1 - - S’
f(éla)0<<+vg<A$)> e

2
ve +1 1 &
logf(§|a, b) o 5 log (1+ o <A5> )—i—é,

where vg and Ag are hyperparameters set by the analyst.
Omitting constants, we write the log posterior as

logf(B. 7,1y, X, Z, o}, vg, Ag)

T
T 7 BB
YT KB+ Ezn) - T

B
2
ve + 1 1 [ é 1
— 1 1+—(— - = ,
2 Og( +v5 (Ag +é 21’ t

where the parameters of interest can be written as 6 :=
Bos-- > Bp Tt T &), withk =g+ n+ 2.

Assuming p ~ Ni(0, M), we write the Hamiltonian function
as,

o« —17 I:ex;]r-ﬂJresz,'jti]
nd
ndx

H@,p) = HB,1,&,p) x logf(ﬂ,r,§|y,X,Z,a§,v5,A§)
L
-pM S
+ 2p P

from which we can derive the Hamiltonian equations, and then
use the leapfrog method to find approximate solutions.
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We write the gradient functions for readers’ convenience,

Vg logf(B.5,tly. X, Z, 04, v, Ag)
T £t
xT (- [ X;; B+e z,]r,] _ 2)
> ( ¢ ndx1 Ty B/GB

VS logf(ﬂaS)r”’)X’ Z, Ué, US>A§)

T8 ok zig: 1
xetrz! (- [exifﬂJre Z’ft’] +y)— %+1,
ndx1 1—|—1)%-A$e*25

Ve logf (B, &, 71y, X, Z, 0}, ve, A¢)

A (— [exf?ﬁ+e€zijri] + Y) —-T.
ndx1

For numerical example, we consider data generated by a
study on gopher tortoises (Ozgul et al. 2009; Fox et al. 2015;
Bolker 2018). The mortality of the tortoise populations is mea-
sured by the number of shells. We estimate the associations of
the number of shells to year (2004, 2005, 2006) and seropreva-
lence of bacterium Mycoplasma agassizii. The random effects are
the intercepts for each of n = 10 sites in Florida. Each site has
d = 3 observations, one for each year. The fixed effects are a
global intercept, two indicator variables for the three years, and
seroprevalence of M. agassizii.

The poisson mixed effects model can be written as

10 3
. . £t
log[E(shells)] o Z Z [_e[l,[(2005)U,1(2006),),previj]ﬂ+e L
i=1 j=1

Yij ([1,1(2005),']‘,1(2006)ij,previj]ﬁ + eszijfz‘)] _

2
ﬂTﬂ v +1 1 [ é 1 7
— — =1 1+ —1— - = ,
20; 2 8 + ve \ Ag +& ZT ’
(5)

where y  :=  (shellsy,...,shells;o)” and shells; =
(shells;, shellsy, shells;)T. The fixed effects design matrix is
composed from Xijr = [1,1(2005),']-,I(2006)ij,previj], and the
random effects design matrix from z; = 1 for site i and 0
otherwise, for all observations j = 1,2, 3.

To fit this model using hme, we first specify the initial values
of 0 in a vector of length k = 15 and use the default hyperpa-
rameters cré = le3,ve = l,and Ay = 25. The step sizes are
selected as part of the tuning process.

The HMC simulation takes about 23 sec to run on a 2015
Macbook Pro with a 2.5GHz processor. The marginal posterior
sample distributions for f (@) are found to be well-behaved with
central locations similar to frequentist estimates. The R code for
fitting the model is presented in Section A.4 of the appendix.

In each of the above examples, we set N = 2000 HMC
samples including a short burn-in period. The R statistics for
each of the simulations is close to one, indicating that multiple
chains converged to the same distribution for each example.
Informally, the relatively low number of HMC simulations illus-
trates the efficiency benefits of this algorithm over traditional
MCMC methods, such as the Metropolis algorithm, which often
require many thousands of simulations to achieve a converge. A
substantially larger number of simulations can push Metropolis
to have a longer runtime than hmc in hmclearn, even when
Metropolis is programmed in an efficient compiled language like
C++.
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6. Discussion

Since its becoming of a general-purpose computational method
in the early 1990s, MCMC has fundamentally changed the
landscape of Bayesian data analysis (Robert and Casella 2011).
Previous confinement to the conjugate families of distributions
has been lifted, and analysts have been freed from the burden of
explicitly deriving the posteriors. Over the past three decades,
tremendous progress has been made in refining the MCMC
methods; models are becoming more flexible, algorithms more
comprehensive, and software easier to use. Despite the progress,
however, as analysts begin to take on increasingly complex
statistical models, suboptimal efficiency has become a predom-
inant concern, especially in models involving high dimensional
parameters. In many of those situations, traditional MCMC is
often too slow to be practically useful.

One of the newer variants of MCMC algorithms designed
to address the efficiency problem is HMC. With the aid of
the posterior gradient functions and the Hamiltonian equa-
tions, HMC tends to converge to regions of higher posterior
density more quickly in comparison with Metropolis-Hastings.
For example, Section 5.7.1 of Agresti (2015) uses MCMCpack
(Martin, Quinn, and Park 2011) to fit a logistic regression model
using Metropolis—-Hastings. The compiled C++ code from this
package is computationally advantageous compared to the fully
R-based hmclearn. However, the run-time of this example
with MCMCpack is approximately 2.6 min on a 2015 Macbook
Pro with a 2.5GHz processor, versus 40 sec with hmclearn on
the same computer, a 5x difference. The code for this exam-
ple is detailed in the Logistic Regression vignette provided for
hmclearn on CRAN. Analysts who require efficient HMC
computation without the need for manually computing gradi-
ents or tuning parameters may consider Stan (Carpenter et al.
2017) for practical use. Stan translates BUGS-like (Spiegelhalter
et al. 1999) code to C++ code for efficient computation.

These exciting developments, however, have not been trans-
lated into analytical practice. Many statistical practitioners
remain unfamiliar with these powerful tools and, thus, hesitant
to use them. Some have attempted to generate HMC samples
by mimicking the Stan code, but in the absence of an in-depth
understanding of the method and the ideas behind it, many
analysts have not acquired a level of comfort to write HMC
code for less standard analyses. We contend that the best way
to learn a new method is through hands-on data analysis, with
common statistical models on a familiar computational plat-
form. With this in mind, we have put forward an introductory
level description of HMC, not with the original terminology of
classical mechanics, but in a more familiar language of statistics.
We have disseminated the components of the HMC algorithm
and discussed the implementation details, from prior specifica-
tion, posterior and gradient function derivation, to solving the
Hamiltonian differential equations, and to the tuning of HMC
parameters. Herein, we present an R package hmclearn to
help beginners to experiment with HMC in a familiar com-
puting environment. The main function of this package, hmc
is designed for general use - analysts could use it to produce
MCMC samples by using user-supplied posterior functions. We
have provided many concrete data examples, in the package
as well as in this article, to help learners study and appreciate

the inner workings of the algorithm. In comparison with com-
monly used Bayesian data analysis software such as Stan, our
package hmclearn is designed primarily as a teaching tool.
As such, the input functions require hands-on programming,
so that the data-generation process is made more transparent
to its users. This said, we would not trivialize the potential
challenges in implementing a successful HMC program. The
tuning of parameters, for example, often requires much practice
and experience. Notwithstanding such limitations, we hope that
this article provides an intuitive introduction of a powerful and
yet intricate computational tool.

Supplementary Materials

Appendix: R code for HMC examples. (pdf file type)

R-package for learning HMC: R-package hmclearn contains a general-
purpose function as well as utility functions for the model fitting meth-
ods described in the article. Example datasets and code are also made
available in the package. The package hmclearn can be accessed at
https://cran.r-project.org/web/packages/hmclearn/index.html.
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