This is an R Markdown
Notebook. When you execute code within the notebook, the results appear
beneath the code.
Try executing this chunk by clicking the Run button within
the chunk or by placing your cursor inside it and pressing
Cmd+Shift+Enter.
Add a new chunk by clicking the Insert Chunk button on the
toolbar or by pressing Cmd+Option+I.
When you save the notebook, an HTML file containing the code and
output will be saved alongside it (click the Preview button or
press Cmd+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the
editor. Consequently, unlike Knit, Preview does not
run any R code chunks. Instead, the output of the chunk when it was last
run in the editor is displayed.
- 2E1. Which of the expressions below correspond to the statement: the
probability of rain on Monday?
- Pr(rain)
- Pr(rain|Monday) # CORRECT
- Pr(Monday|rain)
- Pr(rain, Monday)/ Pr(Monday) # CORRECT
- 2E2. Which of the following statements corresponds to the
expression: Pr(Monday|rain)?
- The probability of rain on Monday.
- The probability of rain, given that it is Monday.
- The probability that it is Monday, given that it is raining. #
CORRECT
- The probability that it is Monday and that it is raining.
- 2E3. Which of the expressions below correspond to the statement: the
probability that it is Monday, given that it is raining?
- Pr(Monday|rain) # CORRECT
- Pr(rain|Monday)
- Pr(rain|Monday) Pr(Monday)
- Pr(rain|Monday) Pr(Monday)/ Pr(rain) # CORRECT
- Pr(Monday|rain) Pr(rain)/ Pr(Monday)
- 2M1. Recall the globe tossing model from the chapter. Compute and
plot the grid approximate posterior distribution for each of the
following sets of observations. In each case, assume a uniform prior for
p.
- W, W, W
- W, W, W, L
- L, W, W, L, W, W, W
p_grid <- seq( from=0 , to=1 , length.out=100 ) # likelihood of 3 water in 3 tosses
likelihood <- dbinom( 3 , size=3 , prob=p_grid )
prior <- rep(1,100) # uniform prior
posterior <- likelihood * prior
posterior <- posterior / sum(posterior) # standardize
plot( posterior ~ p_grid , type="l" )

p_grid <- seq( from=0 , to=1 , length.out=100 ) # likelihood of 3 water in 4 tosses
likelihood <- dbinom( 3 , size=4 , prob=p_grid )
prior <- rep(1,100) # uniform prior
posterior <- likelihood * prior
posterior <- posterior / sum(posterior) # standardize
plot( posterior ~ p_grid , type="l" )

p_grid <- seq( from=0 , to=1 , length.out=100 ) # likelihood of 3 water in 3 tosses
likelihood <- dbinom( 5 , size=7 , prob=p_grid )
prior <- rep(1,100) # uniform prior
posterior <- likelihood * prior
posterior <- posterior / sum(posterior) # standardize
plot( posterior ~ p_grid , type="l" )

2M2. Now assume a prior for p that is equal to zero when p < 0.5
and is a positive constant when p ≥ 0.5. Again compute and plot the grid
approximate posterior distribution for each of the sets of observations
in the problem just above.
p_grid <- seq( from=0 , to=1 , length.out=100 ) # likelihood of 3 water in 3 tosses
likelihood <- dbinom( 3 , size=3 , prob=p_grid )
prior <- rep(1,100) # uniform prior
prior[p_grid<0.5]<-0
# alt: prior <- ifelse( p_grid < 0.5 , 0 , 1 )
posterior <- likelihood * prior
posterior <- posterior / sum(posterior) # standardize
plot( posterior ~ p_grid , type="l" )

p_grid <- seq( from=0 , to=1 , length.out=100 ) # likelihood of 3 water in 3 tosses
likelihood <- dbinom( 3 , size=4 , prob=p_grid )
prior <- rep(1,100) # uniform prior
prior[p_grid<0.5]<-0
# alt: prior <- ifelse( p_grid < 0.5 , 0 , 1 )
posterior <- likelihood * prior
posterior <- posterior / sum(posterior) # standardize
plot( posterior ~ p_grid , type="l" )

p_grid <- seq( from=0 , to=1 , length.out=100 ) # likelihood of 3 water in 3 tosses
likelihood <- dbinom( 5 , size=7 , prob=p_grid )
prior <- rep(1,100) # uniform prior
prior[p_grid<0.5]<-0
# alt: prior <- ifelse( p_grid < 0.5 , 0 , 1 )
posterior <- likelihood * prior
posterior <- posterior / sum(posterior) # standardize
plot( posterior ~ p_grid , type="l" )

CHALLENGE: 2H1. Suppose there are two species of panda bear. Both are
equally common in the wild and live in the same places. They look
exactly alike and eat the same food, and there is yet no genetic assay
capable of telling them apart. They differ however in their family
sizes. Species A gives birth to twins 10% of the time, otherwise
birthing a single infant. Species B births twins 20% of the time,
otherwise birthing singleton infants. Assume these numbers are known
with certainty, from many years of field research.
Now suppose you are managing a captive panda breeding program. You
have a new female panda of unknown species, and she has just given birth
to twins. What is the probability that her next birth will also be
twins?
Pr(Twins|A) = 0.10 Pr(Single|A) = 0.90
Pr(Twins|B) = 0.20 Pr(Single|B) = 0.80
Pr(A|Twins)= Pr(Twins|A)Pr(A) / Pr(Twins|A)Pr(A) +
Pr(Twins|b)*Pr(B)
Pr(Twins| Twins)=Pr(Twins|A)Pr(A) + Pr(Twins|B)Pr(B)
pA<- 0.10 * 0.50 / (0.10 * 0.50 + 0.20 * 0.50)
pB<-1-pA
pTwins<-0.10*pA + 0.20*pB
pTwins
[1] 0.1666667
LS0tCnRpdGxlOiAiUiAwMi1TbWFsbFdvcmxkc19DaDIgU29sdXRpb25zIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIwpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiAKClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDbWQrU2hpZnQrRW50ZXIqLiAKCgpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ21kK09wdGlvbitJKi4KCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ21kK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuIAoKVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLgoKCiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjCgoxLiAyRTEuICBXaGljaCBvZiB0aGUgZXhwcmVzc2lvbnMgYmVsb3cgY29ycmVzcG9uZCB0byB0aGUgc3RhdGVtZW50OiAKICB0aGUgcHJvYmFiaWxpdHkgb2YgcmFpbiBvbiBNb25kYXk/CiAgKDEpICBQcihyYWluKQogICgyKSAgUHIocmFpbnxNb25kYXkpICMgQ09SUkVDVAogICgzKSAgUHIoTW9uZGF5fHJhaW4pCiAgKDQpICBQcihyYWluLCBNb25kYXkpLyBQcihNb25kYXkpICMgQ09SUkVDVAoKMi4gMkUyLiAgV2hpY2ggb2YgdGhlIGZvbGxvd2luZyBzdGF0ZW1lbnRzIGNvcnJlc3BvbmRzIHRvIHRoZSBleHByZXNzaW9uOiAKICAgUHIoTW9uZGF5fHJhaW4pPwogIAogICgxKSAgVGhlIHByb2JhYmlsaXR5IG9mIHJhaW4gb24gTW9uZGF5LgogICgyKSAgVGhlIHByb2JhYmlsaXR5IG9mIHJhaW4sIGdpdmVuIHRoYXQgaXQgaXMgTW9uZGF5LgogICgzKSAgVGhlIHByb2JhYmlsaXR5IHRoYXQgaXQgaXMgTW9uZGF5LCBnaXZlbiB0aGF0IGl0IGlzIHJhaW5pbmcuICMgQ09SUkVDVAogICg0KSAgVGhlIHByb2JhYmlsaXR5IHRoYXQgaXQgaXMgTW9uZGF5IGFuZCB0aGF0IGl0IGlzIHJhaW5pbmcuCiAgCjMuIDJFMy4gIFdoaWNoIG9mIHRoZSBleHByZXNzaW9ucyBiZWxvdyBjb3JyZXNwb25kIHRvIHRoZSBzdGF0ZW1lbnQ6IAogICB0aGUgcHJvYmFiaWxpdHkgdGhhdCBpdCBpcyBNb25kYXksIGdpdmVuIHRoYXQgaXQgaXMgcmFpbmluZz8KICAKICAoMSkgIFByKE1vbmRheXxyYWluKSAjIENPUlJFQ1QKICAoMikgIFByKHJhaW58TW9uZGF5KQogICgzKSAgUHIocmFpbnxNb25kYXkpIFByKE1vbmRheSkKICAoNCkgIFByKHJhaW58TW9uZGF5KSBQcihNb25kYXkpLyBQcihyYWluKSAjIENPUlJFQ1QKICAoNSkgIFByKE1vbmRheXxyYWluKSBQcihyYWluKS8gUHIoTW9uZGF5KQoKNC4gMk0xLiAgUmVjYWxsIHRoZSBnbG9iZSB0b3NzaW5nIG1vZGVsIGZyb20gdGhlIGNoYXB0ZXIuIAogQ29tcHV0ZSBhbmQgcGxvdCB0aGUgZ3JpZCBhcHByb3hpbWF0ZSBwb3N0ZXJpb3IgZGlzdHJpYnV0aW9uIAogZm9yIGVhY2ggb2YgdGhlIGZvbGxvd2luZyBzZXRzIG9mIG9ic2VydmF0aW9ucy4gSW4gZWFjaCBjYXNlLCAKIGFzc3VtZSBhIHVuaWZvcm0gcHJpb3IgZm9yIHAuCiAKICAoMSkgIFcsIFcsIFcKICAoMikgIFcsIFcsIFcsIEwKICAoMykgIEwsIFcsIFcsIEwsIFcsIFcsIFcKICAKICAKYGBge3J9CnBfZ3JpZCA8LSBzZXEoIGZyb209MCAsIHRvPTEgLCBsZW5ndGgub3V0PTEwMCApICMgbGlrZWxpaG9vZCBvZiAzIHdhdGVyIGluIDMgdG9zc2VzCmxpa2VsaWhvb2QgPC0gZGJpbm9tKCAzICwgc2l6ZT0zICwgcHJvYj1wX2dyaWQgKQpwcmlvciA8LSByZXAoMSwxMDApICMgdW5pZm9ybSBwcmlvcgpwb3N0ZXJpb3IgPC0gbGlrZWxpaG9vZCAqIHByaW9yCnBvc3RlcmlvciA8LSBwb3N0ZXJpb3IgLyBzdW0ocG9zdGVyaW9yKSAjIHN0YW5kYXJkaXplCiBwbG90KCBwb3N0ZXJpb3IgfiBwX2dyaWQgLCB0eXBlPSJsIiApCmBgYAoKYGBge3J9CnBfZ3JpZCA8LSBzZXEoIGZyb209MCAsIHRvPTEgLCBsZW5ndGgub3V0PTEwMCApICMgbGlrZWxpaG9vZCBvZiAzIHdhdGVyIGluIDQgdG9zc2VzCmxpa2VsaWhvb2QgPC0gZGJpbm9tKCAzICwgc2l6ZT00ICwgcHJvYj1wX2dyaWQgKQpwcmlvciA8LSByZXAoMSwxMDApICMgdW5pZm9ybSBwcmlvcgpwb3N0ZXJpb3IgPC0gbGlrZWxpaG9vZCAqIHByaW9yCnBvc3RlcmlvciA8LSBwb3N0ZXJpb3IgLyBzdW0ocG9zdGVyaW9yKSAjIHN0YW5kYXJkaXplCiBwbG90KCBwb3N0ZXJpb3IgfiBwX2dyaWQgLCB0eXBlPSJsIiApCmBgYAoKYGBge3J9CnBfZ3JpZCA8LSBzZXEoIGZyb209MCAsIHRvPTEgLCBsZW5ndGgub3V0PTEwMCApICMgbGlrZWxpaG9vZCBvZiAzIHdhdGVyIGluIDMgdG9zc2VzCmxpa2VsaWhvb2QgPC0gZGJpbm9tKCA1ICwgc2l6ZT03ICwgcHJvYj1wX2dyaWQgKQpwcmlvciA8LSByZXAoMSwxMDApICMgdW5pZm9ybSBwcmlvcgpwb3N0ZXJpb3IgPC0gbGlrZWxpaG9vZCAqIHByaW9yCnBvc3RlcmlvciA8LSBwb3N0ZXJpb3IgLyBzdW0ocG9zdGVyaW9yKSAjIHN0YW5kYXJkaXplCiBwbG90KCBwb3N0ZXJpb3IgfiBwX2dyaWQgLCB0eXBlPSJsIiApCmBgYAoKMk0yLiAgTm93IGFzc3VtZSBhIHByaW9yIGZvciBwIHRoYXQgaXMgZXF1YWwgdG8gemVybyB3aGVuIHAgPCAwLjUgYW5kIGlzIGEgcG9zaXRpdmUgY29uc3RhbnQgd2hlbiBwIOKJpSAwLjUuIEFnYWluIGNvbXB1dGUgYW5kIHBsb3QgdGhlIGdyaWQgYXBwcm94aW1hdGUgcG9zdGVyaW9yIGRpc3RyaWJ1dGlvbiBmb3IgZWFjaCBvZiB0aGUgc2V0cyBvZiBvYnNlcnZhdGlvbnMgaW4gdGhlIHByb2JsZW0ganVzdCBhYm92ZS4KYGBge3J9CnBfZ3JpZCA8LSBzZXEoIGZyb209MCAsIHRvPTEgLCBsZW5ndGgub3V0PTEwMCApICMgbGlrZWxpaG9vZCBvZiAzIHdhdGVyIGluIDMgdG9zc2VzCmxpa2VsaWhvb2QgPC0gZGJpbm9tKCAzICwgc2l6ZT0zICwgcHJvYj1wX2dyaWQgKQpwcmlvciA8LSByZXAoMSwxMDApICMgdW5pZm9ybSBwcmlvcgpwcmlvcltwX2dyaWQ8MC41XTwtMAojIGFsdDogcHJpb3IgPC0gaWZlbHNlKCBwX2dyaWQgPCAwLjUgLCAwICwgMSApIApwb3N0ZXJpb3IgPC0gbGlrZWxpaG9vZCAqIHByaW9yCnBvc3RlcmlvciA8LSBwb3N0ZXJpb3IgLyBzdW0ocG9zdGVyaW9yKSAjIHN0YW5kYXJkaXplCiBwbG90KCBwb3N0ZXJpb3IgfiBwX2dyaWQgLCB0eXBlPSJsIiApCmBgYAoKCmBgYHtyfQpwX2dyaWQgPC0gc2VxKCBmcm9tPTAgLCB0bz0xICwgbGVuZ3RoLm91dD0xMDAgKSAjIGxpa2VsaWhvb2Qgb2YgMyB3YXRlciBpbiAzIHRvc3NlcwpsaWtlbGlob29kIDwtIGRiaW5vbSggMyAsIHNpemU9NCAsIHByb2I9cF9ncmlkICkKcHJpb3IgPC0gcmVwKDEsMTAwKSAjIHVuaWZvcm0gcHJpb3IKcHJpb3JbcF9ncmlkPDAuNV08LTAKIyBhbHQ6IHByaW9yIDwtIGlmZWxzZSggcF9ncmlkIDwgMC41ICwgMCAsIDEgKSAKcG9zdGVyaW9yIDwtIGxpa2VsaWhvb2QgKiBwcmlvcgpwb3N0ZXJpb3IgPC0gcG9zdGVyaW9yIC8gc3VtKHBvc3RlcmlvcikgIyBzdGFuZGFyZGl6ZQogcGxvdCggcG9zdGVyaW9yIH4gcF9ncmlkICwgdHlwZT0ibCIgKQpgYGAKYGBge3J9CnBfZ3JpZCA8LSBzZXEoIGZyb209MCAsIHRvPTEgLCBsZW5ndGgub3V0PTEwMCApICMgbGlrZWxpaG9vZCBvZiAzIHdhdGVyIGluIDMgdG9zc2VzCmxpa2VsaWhvb2QgPC0gZGJpbm9tKCA1ICwgc2l6ZT03ICwgcHJvYj1wX2dyaWQgKQpwcmlvciA8LSByZXAoMSwxMDApICMgdW5pZm9ybSBwcmlvcgpwcmlvcltwX2dyaWQ8MC41XTwtMAojIGFsdDogcHJpb3IgPC0gaWZlbHNlKCBwX2dyaWQgPCAwLjUgLCAwICwgMSApIApwb3N0ZXJpb3IgPC0gbGlrZWxpaG9vZCAqIHByaW9yCnBvc3RlcmlvciA8LSBwb3N0ZXJpb3IgLyBzdW0ocG9zdGVyaW9yKSAjIHN0YW5kYXJkaXplCiBwbG90KCBwb3N0ZXJpb3IgfiBwX2dyaWQgLCB0eXBlPSJsIiApCmBgYAoKCgpDSEFMTEVOR0U6IDJIMS4gIFN1cHBvc2UgdGhlcmUgYXJlIHR3byBzcGVjaWVzIG9mIHBhbmRhIGJlYXIuIEJvdGggYXJlIGVxdWFsbHkgY29tbW9uIGluIHRoZSB3aWxkIGFuZCBsaXZlIGluIHRoZSBzYW1lIHBsYWNlcy4gVGhleSBsb29rIGV4YWN0bHkgYWxpa2UgYW5kIGVhdCB0aGUgc2FtZSBmb29kLCBhbmQgdGhlcmUgaXMgeWV0IG5vIGdlbmV0aWMgYXNzYXkgY2FwYWJsZSBvZiB0ZWxsaW5nIHRoZW0gYXBhcnQuIFRoZXkgZGlmZmVyIGhvd2V2ZXIgaW4gdGhlaXIgZmFtaWx5IHNpemVzLiBTcGVjaWVzIEEgZ2l2ZXMgYmlydGggdG8gdHdpbnMgMTAlIG9mIHRoZSB0aW1lLCBvdGhlcndpc2UgYmlydGhpbmcgYSBzaW5nbGUgaW5mYW50LiBTcGVjaWVzIEIgYmlydGhzIHR3aW5zIDIwJSBvZiB0aGUgdGltZSwgb3RoZXJ3aXNlIGJpcnRoaW5nIHNpbmdsZXRvbiBpbmZhbnRzLiBBc3N1bWUgdGhlc2UgbnVtYmVycyBhcmUga25vd24gd2l0aCBjZXJ0YWludHksIGZyb20gbWFueSB5ZWFycyBvZiBmaWVsZCByZXNlYXJjaC4KCk5vdyBzdXBwb3NlIHlvdSBhcmUgbWFuYWdpbmcgYSBjYXB0aXZlIHBhbmRhIGJyZWVkaW5nIHByb2dyYW0uIFlvdSBoYXZlIGEgbmV3IGZlbWFsZSBwYW5kYSBvZiB1bmtub3duIHNwZWNpZXMsIGFuZCBzaGUgaGFzIGp1c3QgZ2l2ZW4gYmlydGggdG8gdHdpbnMuIFdoYXQgaXMgdGhlIHByb2JhYmlsaXR5IHRoYXQgaGVyIG5leHQgYmlydGggd2lsbCBhbHNvIGJlIHR3aW5zPwoKUHIoVHdpbnN8QSkgPSAwLjEwClByKFNpbmdsZXxBKSA9IDAuOTAKClByKFR3aW5zfEIpID0gMC4yMApQcihTaW5nbGV8QikgPSAwLjgwCgpQcihBfFR3aW5zKT0gUHIoVHdpbnN8QSkqUHIoQSkgLyBQcihUd2luc3xBKSpQcihBKSArIFByKFR3aW5zfGIpKlByKEIpCgpQcihUd2luc3wgVHdpbnMpPVByKFR3aW5zfEEpKlByKEEpICsgUHIoVHdpbnN8QikqUHIoQikgCmBgYHtyfQpwQTwtIDAuMTAgKiAwLjUwIC8gKDAuMTAgKiAwLjUwICsgMC4yMCAqIDAuNTApCnBCPC0xLXBBCnBUd2luczwtMC4xMCpwQSArIDAuMjAqcEIKcFR3aW5zCmBgYAoKICAKCg==