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Abstract

Lightning is a critical driver of natural wildfire ignition and ecosystem dynamics, but exist-
ing prediction models rely on upper-air predictors such as convective available potential
energy (CAPE) that are absent from paleoclimate reconstructions. To enable long-term
reconstructions of lightning activity, we developed and evaluated statistical models based
solely on near-surface climate variables: temperature, precipitation, humidity, surface air
pressure, wind, and shortwave radiation. Using ERA5 reanalysis and Vaisala Lightning De-
tection Network data (2005–2010) for the Northeastern United States, we compared linear
regression, gamma generalized linear models, and Bayesian gamma models against CAPE-
based benchmarks. While CAPE-based models outperformed models based on individual
near-surface predictors, they showed limitations when predicting temporal anomalies.
Models incorporating multiple near-surface predictors consistently outperformed CAPE-
based models, reproducing observed spatial gradients, interannual variability, and strike
rate distributions. Gamma generalized linear models achieved the strongest overall per-
formance, balancing realistic, non-negative predictions with accuracy across error- and
correlation-based metrics, while Bayesian models better captured the distribution of strike
rates but sacrificed spatial precision. Our results demonstrate that near-surface predictors
provide a viable alternative for lightning prediction when upper-air data are unavail-
able, providing a methodological pathway for reconstructing long-term seasonal lightning
variability and its role in climate-fire interactions.

Keywords: lightning prediction; near-surface climate variables; convective processes;
statistical modeling; Northeastern United States

1. Introduction
Lightning has played a fundamental role in shaping wildfire regimes and terrestrial

ecosystems for millions of years, serving as both a natural disturbance agent and an ecologi-
cal driver [1]. In fire-adapted ecosystems, wildfires create mosaic patterns of succession [2,3]
and promote biodiversity [4]. The efficiency of lightning in igniting wildfires depends on
fuel availability and weather conditions [5–7] both of which are sensitive to climate. As
global temperatures rise, shifts in atmospheric convection may alter lightning frequency
and distribution, potentially driving a rise in lightning-ignited wildfires [8] and triggering
ecological transitions in vulnerable regions [5,9].
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This interaction between climate and lightning-caused wildfire is increasingly relevant
to the Northeastern United States (NE US) given projected increases in fire risk across
the region. Regional climate projections predict rises in temperature (defined by milder
winters and warmer summers), and longer droughts (flanked by extreme precipitation
events) [10,11], which are likely to intensify fire weather conditions in the region [12–15].
Understanding the joint role of climate and lightning in driving wildfire is therefore critical
for anticipating future changes.

One way to inform this future is by examining the past. Reconstructing lightning,
wildfire, and vegetation dynamics over the last millennium can provide a baseline for
understanding natural variability and for evaluating ecosystem resilience to climate change.
However, existing lightning prediction models are ill-suited for this task. Most rely on
upper-air predictors including convective available potential energy (CAPE) [8,9,16,17],
lifting condensation level, column saturation fraction [16], cloud top height, updraft in-
tensity, cold cloud depth [18,19], convective mass flux [20,21], cloud radius, graupel-pellet
concentration, updraft speed [22], and atmospheric electric field [23]. These predictors are
available in modern reanalyses and global climate model outputs, but they are not available
in paleoclimate reconstructions, which instead provide long-term records of near-surface
variables from proxy data [24–26].

This limitation creates a methodological gap: lightning models developed for modern
datasets cannot be directly applied to paleoclimate reconstructions. To address this gap, we
develop lightning prediction models based solely on near-surface climate variables. By doing
so, we provide a framework for reconstructing historical lightning activity in the NE US over
the last millennium, and for linking these reconstructions to fire and vegetation response.
We replace CAPE-based predictors with six near-surface climate variables: temperature,
precipitation, humidity, surface air pressure, wind, and shortwave radiation and apply three
modeling approaches: a simple linear regression with Gaussian errors, a generalized linear
model (GLM) with gamma-distributed errors, and a Bayesian gamma approach. Using ERA5
reanalysis data [27] and Vaisala Lightning Database records [28] (2005–2010) for the NE US,
we benchmark these approaches against modern observations, providing a foundation for
paleoclimate applications where only near-surface variables are available.

2. Materials and Methods
2.1. Data

This study develops alternative lightning prediction models that replace an upper-
air predictor with near-surface predictors available in paleoclimate reconstructions. We
selected the 2005–2010-year period because we are limited by the Vaisala Lightning Detec-
tion Network’s [28] data distribution policies. These specific years provide the maximum
overlap between available lightning observations and available paleoclimate reconstruc-
tions, ensuring continuity between model development and downstream applications in
lightning, wildfire, and vegetation dynamics in the NE US.

CAPE (J/kg) and the product of CAPE and Precipitation (CAPE × precip) were chosen
as upper-air predictors to compare with near-surface predictors, due to their effectiveness
in predicting lightning in previous work [8,9]. Near-surface predictors include 2 m tem-
perature (◦C), instantaneous 10 m wind gust (m/s), mean surface downward shortwave
radiation flux (W/m2), surface pressure (Pa), mean total precipitation rate (kg/m2/s), and
relative humidity (%), calculated from temperature and 2 m dew point temperature). These
six climate variables were selected because they are included in the paleoclimate reconstruc-
tions available for the NE US [29]. ERA5 reanalysis data were obtained from the Copernicus
Climate Change Service [27] and are on a 0.25◦ × 0.25◦ resolution grid (corresponding, in
the study region, to an approximately 28 km by 20 km grid) that covers New England and
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New York. The data span a six year period (2005–2010) on an hourly time step. Relative
humidity (following the Magnus–Tetens approximation, [30]) and the CAPE × precip term
were calculated at the hourly scale before being summarized to monthly averages.

The Vaisala National Lightning Detection Network [28] provided daily lightning
counts for the 2005–2010 period. The data were collected by ground-based stations
that detect electromagnetic activity emitted during a lightning strike. Vaisala achieved
cloud-to-ground (CG) detection efficiencies of ~90–95% across the continental US dur-
ing 2005–2010 [31,32]. Intra-cloud (IC) strikes were more challenging to detect during
this period, with efficiencies below 20%, though classification algorithms improved over
time [33,34]. NLDN distinguishes CG from IC strikes based on electromagnetic waveform
characteristics, with CG strikes producing distinct ground-return signatures. Only CG
lightning strikes were used in this analysis (not IC or total strikes). The dataset includes
the date, time, location, and number of strokes for each CG lightning strike. A CG strike
consists of all the CG strokes that occur within 10 km and 1 s of each other. Here, we are
interested in modeling CG strikes, not strokes. To address the challenges of zero-inflated
data, we followed the methods of Moon and Kim (2020) [17], excluding the winter months
(October to April), which reduced the percentage of zeros in the daily lightning count data
from 93% to 85%. This exclusion has little effect on the analysis, as lightning activity during
these months is minimal compared to the summer season (Figure 1a). Furthermore, our
focus was on the fire season months when lightning plays an ecological role.

To match the lightning point data to the ERA5 grid, lightning point locations were
assigned to a raster layer with the same spatial resolution as the ERA5 grid. Lightning strikes
that occurred within a given cell during a given summer month (May to September) were
summed and divided by the grid cell area to calculate a strike rate, expressed in strikes per
km2 per month, matching the units in Romps et al. (2014) [8]. This procedure was carried
out for each summer season across the entire study period (2005–2010) and region (New
England and New York). Aggregating the data this way allowed for a consistent spatial and
temporal alignment of the lightning data with the ERA5 climate data and kept the target
variable (lightning strike rate) above zero, facilitating downstream modeling. The data include
3246 total observations of summer mean values, corresponding to 541 grid cells across the NE
US over six years. These observations were randomly split across all years into train (80%)
and test (20%) sets.

2.2. Model Definitions

Since upper-air variables such as CAPE are not typically included in long-term historical
climate reconstructions, they cannot be used to model lightning strike rates over these periods.
To address this limitation, we build upon existing, well performing models (Baseline models,
C1–C5) from Chen et al. (2021) [9] that predict lightning strikes from CAPE × precipitation [9].
We test three modeling approaches: (1) a linear model with Gaussian errors (Normal LMs,
N1–N13), (2) a GLM with gamma-distributed errors (gamma GLMs, G1–G13), and (3) a
Bayesian approach that models the full predictive distribution (Bayesian gamma models, B1–
B13). Within each approach, we applied both upper-air and near-surface climate predictors,
as well as the additive effects of multiple near-surface predictors. Variable selection for the
additive models was guided by a combination of random forest importance (mean decrease
in impurity and increase in mean square error) and exploratory visual analysis; variables were
added stepwise beginning with shortwave radiation (the most important predictor), allowing
us to assess the contribution of each variable to predictive skill. Interaction terms between
near-surface predictors were also evaluated to account for potential nonlinear processes in
lightning formation, but this consistently degraded performance, so final models retained
only additive structures.
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Figure 1. Spatial and temporal distribution of observed lightning and climate data. (a) Monthly
distribution of lightning strike rates (strikes km−2 month−1) across the Northeastern United States
for the period 2005–2010. Each dot represents the strike rate at a single grid point in a given month
across all years in the study period. To improve visibility, points are jittered along the x-axis. Overlaid
box-and-whisker plots summarize the distribution in each month, showing the median (line), first and
third quartiles (box), and whiskers extending to 1.5 times the interquartile range. (b) cloud-to-ground
lightning strike rate (strikes/km2/month), (c) CAPE (J/kg), (d) CAPE × Precipitation (W/m2),
(e) Temperature (Celsius), (f) Wind speed (m/s), (g) Short-wave radiation (W/m2), (h) Surface
pressure (Pa), (i) Relative humidity (%), and (j) Precipitation (kg/m2/s). Mapped values are for
summer months (May–September), averaged across the 2005–2010 training period. All variables
excluding the target (lightning strike rate) are standardized. Lightning data are derived from the
Vaisala Lightning Database and climate data come from the ERA5 climate reanalysis product (Vaisala,
Inc., Tucson, AZ, USA; Hersbach et al., 2020 [27]).
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Predictor variables were standardized using z-score transformation prior to fit-
ting the Normal LMs, Gamma GLMs, and Bayesian Gamma models. The baseline
CAPE × precipitation models, which rely on a single predictor, were fitted without stan-
dardization to maintain comparability with Chen et al. (2021) [9]. Because these baseline
models include only one predictor, standardization is not required to balance the influ-
ence of multiple variables, and using raw values preserves consistency with the original
methods in Chen et al. (2021) [9]. We emphasize interpretable statistical approaches rather
than black-box machine learning models, as the limited sample size (3246 observations)
increases the risk of overfitting in high-capacity algorithms.

2.2.1. Baseline Models (C1–C5)

The initial model set (C1–C5 in Tables 1 and 2) is based on five models from Chen
et al. (2021) [9] and serves as a benchmark for comparing established approaches in the
literature with the models developed in this study. All five models predict lightning strike
rate (rs ) from CAPE × precip (CAPE × Pr). These models employ different functional
forms but share an assumption of normally distributed residuals and constant variance.
They include:

Table 1. Summary of model sets, including probability distribution, shorthand labels, predictor
variables, and Interpretation of predictions.

Model Set Probability
Distribution Label Predictor Variable * Predictions

Baseline models
(Chen et al., 2021 [9])

Normal error,
constant variance C1–C5 Upper-air Expected mean response

Linear model Normal error,
constant variance N1–N2 Upper-air Expected mean response

N3–N13 Near-surface

Gamma GLM
Gamma-distributed

errors, variance
proportional to mean

G1–G2 Upper-air Expected mean response,
always positive

G3–G13 Near-surface

Gamma Bayesian
Gamma distribution
with full posterior

uncertainty
B1–B2 Upper-air

Full predictive
distribution accounting

for uncertainty

B3–B13 Near-surface
* Upper-air refers to CAPE and CAPE × precip, while near-surface refers to relative humidity, shortwave radiation,
temperature, surface pressure, precipitation, and wind.

Table 2. Baseline model descriptions and parameter estimates.

Model Label Functional Form for E[rs] a b

C1 a(CAPE × Pr)b 4.441 ± 0.337 1.206 ± 0.069
C2 a(CAPE × Pr)b 15.090 ± 4.596 0.794 ± 0.066
C3 a(CAPE × Pr) 32.753 ± 2.565 NA *
C4 Non-parametric model NA NA
C5 Ensemble mean NA NA

* NA values indicate models that do not include that parameter.

1. C1 (Power Law Model): rs = a(CAPE × Pr)b, where a and b are estimated via log-log
regression.

2. C2 (Power Law, Linear Optimization): Follows the same functional form as C1 but
applies nonlinear least squares optimization directly without log transformation.
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3. C3 (Scaling Model): rs = a(CAPE × Pr), assumes direct proportionality between rs

and CAPE × Pr.
4. C4 (Non-Parametric Model): Uses a lookup table of mean strike rates across binned

values of CAPE × Pr.
5. C5 (Ensemble Model): Applies the ensemble mean of C1–C4.

These models have been retrained on data for the study region (NE US). Fitting was
conducted in R [35] using the built in linear model function for models C1 and C3, and a
nonlinear least squares function for model C2. These models assume normally distributed
residuals and constant variance.

2.2.2. Linear Models (N1–N13)

These models (N1–N13, Tables 1 and 3) modify the baseline approach by incorporating
near-surface climate variables as predictors. Lightning strike rate is modeled as a function
of climate using a Gaussian error distribution:

E[rsi]= a + b·climatei + εi ∼ N
(

0, σ2
)

(1)

where E[rsi] is the observed lightning strike rate for the ith observation, a is the intercept, b
is the regression coefficient for the climate predictor(s), and εi is the normally distributed
error term with variance σ2. These models assume equal variance across climate conditions
and that residuals are normally distributed.

Table 3. Linear model descriptions and parameter estimates.

Model
Label

Functional Form
for E[rs] 1 a b c d e f g

N1 a + b × CAPE 0.335 ± 0.009 0.117 ± 0.009 NA 2 NA NA NA NA
N2 a + b × (CAPE × Pr) 0.335 ± 0.009 0.111 ± 0.009 NA NA NA NA NA
N3 a + b × RH 0.335 ± 0.009 −0.089 ± 0.009 NA NA NA NA NA
N4 a + b × Rsds 0.335 ± 0.009 0.114 ± 0.009 NA NA NA NA NA
N5 a + b × T 0.335 ± 0.009 0.095 ± 0.009 NA NA NA NA NA
N6 a + b × Ps 0.335 ± 0.010 −0.018 ± 0.010 NA NA NA NA NA
N7 a + b × Pr 0.335 ± 0.010 −0.024 ± 0.010 NA NA NA NA NA
N8 a + b × U10 0.335 ± 0.009 −0.075 ± 0.009 NA NA NA NA NA
N9 a + b × Rsds + c × T 0.335 ± 0.009 0.089 ± 0.010 0.044 ± 0.010 NA NA NA NA

N10 a + b × Rsds + c × T
+ d × RH 0.335 ± 0.009 0.082 ± 0.011 0.035 ± 0.012 −0.021 ± 0.012 NA NA NA

N11 a + b × Rsds + c × T
+ d × RH + e × U10 0.335 ± 0.008 0.087 ± 0.011 0.014 ± 0.012 −0.020 ± 0.011 −0.056 ± 0.009 NA NA

N12
a + b × Rsds + c × T
+ d × RH + e × U10

+ f × Pr
0.335 ± 0.008 0.130 ± 0.011 0.001 ± 0.011 −0.060 ± 0.012 −0.053 ± 0.008 0.095 ± 0.011 NA

N13
a + b × Rsds + c × T
+ d × RH + e × U10

+ f × Pr + g × Ps
0.335 ± 0.008 0.113 ± 0.011 0.052 ± 0.013 −0.027 ± 0.012 −0.068 ± 0.008 0.069 ± 0.011 −0.071 ± 0.010

1 Climate predictors include convective available potential energy (CAPE), CAPE × precipitation, relative
humidity (RH), shortwave radiation (Rsds), temperature (T), surface pressure (Ps), precipitation (Pr), and wind
(U10). 2 NA values indicate models that do not include that parameter.

Models N1 and N2 apply CAPE and CAPE × precip, models N3–N8 apply single near-
surface climate predictors (relative humidity, shortwave radiation, temperature, surface
pressure, precipitation, and wind), and models N9–N13 progressively increase model
complexity by exploring the combined effects of near-surface climate predictors, with N13
modeling lightning strike rate as a function of all six near-surface climate variables. Models
were fitted using standard linear modeling techniques in R [35]. Note that the Normal
linear models do not constrain predictions to non-negative values, so occasional negative
strike rates were produced. To evaluate their impact, we compared model performance
(see below) with and without truncating negatives to zero. The skill score, correlation, and
nRMSE differed only marginally (changes < 0.01), confirming that negative values were
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rare and had negligible influence on model evaluation. Negative values were therefore
retained, rather than truncated.

2.2.3. Gamma GLMs (G1–G13)

To better account for the right-skewed nature of lightning strike rates and ensure
non-negative predictions, the gamma GLMs (G1–G13 in Tables 1 and 4) replace the Normal
error distribution with a gamma error distribution and employ a log-link function:

E[rsi] = exp(a + b·climatei) (2)

with
rsi ∼ Gamma(µi , ϕ), Var(rsi) = ϕµ2

i (3)

where rsi is the observed lightning strike rate for the ith observation, E[rsi] is the expected
mean strike rate, a is the intercept, b is the coefficient for the climate predictor(s), and ϕ is
the dispersion parameter. In this formulation, the stochastic error is explicitly represented
by the Gamma-distributed residuals around the mean, in contrast to the Gaussian residuals
of the linear models.

Table 4. Gamma GLM descriptions and parameter estimates.

Model
Label

Functional Form for
E[rs] 1 a b c d e f g

G1 exp(a + b × CAPE) −1.168 ± 0.028 0.444 ± 0.028 NA 2 NA NA NA NA

G2 exp(a + b × CAPE ×
Pr) −1.153 ± 0.029 0.369 ± 0.029 NA NA NA NA NA

G3 exp(a + b × RH) −1.130 ± 0.027 −0.267 ± 0.027 NA NA NA NA NA
G4 exp(a + b × Rsds) −1.151 ± 0.026 0.337 ± 0.026 NA NA NA NA NA
G5 exp(a + b × T) −1.141 ± 0.027 0.332 ± 0.027 NA NA NA NA NA
G6 exp(a + b × Ps) −1.096 ± 0.029 −0.060 ± 0.029 NA NA NA NA NA
G7 exp(a + b × Pr) −1.097 ± 0.029 −0.067 ± 0.029 NA NA NA NA NA
G8 exp(a + b × U10) −1.121 ± 0.028 −0.236 ± 0.028 NA NA NA NA NA

G9 exp(a + b × Rsds + c ×
T) −1.164 ± 0.026 0.246 ± 0.032 0.195 ± 0.032 NA NA NA NA

G10 exp(a + b × Rsds + c ×
T + d × RH) −1.164 ± 0.026 0.244 ± 0.033 0.193 ± 0.035 −0.004 ± 0.035 NA NA NA

G11 exp(a + b × Rsds + c ×
T + d × RH + e × U10) −1.173 ± 0.026 0.256 ± 0.034 0.124 ± 0.037 0.000 ± 0.035 −0.150 ± 0.028 NA NA

G12
exp(a + b × Rsds + c ×
T + d × RH + e × U10

+ f × Pr)
−1.197 ± 0.026 0.382 ± 0.037 0.077 ± 0.037 −0.145 ± 0.038 −0.150 ± 0.027 0.305 ± 0.035 NA

G13
exp(a + b × Rsds + c ×
T + d × RH + e × U10

+ f × Pr + g × Ps)
−1.223 ± 0.024 0.324 ± 0.036 0.299 ± 0.042 −0.017 ± 0.039 −0.218 ± 0.027 0.214 ± 0.036 −0.313 ± 0.032

1 Climate predictors include convective available potential energy (CAPE), CAPE × precipitation, relative
humidity (RH), shortwave radiation (Rsds), temperature (T), surface pressure (Ps), precipitation (Pr), and wind
(U10). 2 NA values indicate models that do not include that parameter.

These models maintain consistency with the Linear Models by applying the same
numerical naming convention: models G1–G2 provide a reference with upper-air predictors
(CAPE and CAPE × precip), while G3–G13 explore individual and combined effects of
near-surface predictors on lightning strike rates (again, with G13 including all six near-
surface variables). These models were fitted in R [35] using a GLM function with gamma-
distributed errors.

2.2.4. Gamma Bayesian Models (B1–B13)

The final model set (B1–B13 in Tables 1 and 5) builds upon the gamma GLMs by
incorporating parameter uncertainty within a Bayesian framework. Instead of predicting
point estimates for the expected mean lightning strike rates, these models estimate the full
predictive distribution by sampling lightning strike rate from the gamma distribution:

rsi ∼ Gamma(αi, βi) (4)
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where the shape (αi) and scale (βi) parameters are linear functions of climate predictor(s) at
the ith observation:

αi = aα + bα·climatei (5)

βi = aβ + bβ·climatei (6)

where {aα, aβ} are intercepts and {bα, bβ} are coefficients for α and β. Priors for the intercepts
and coefficients are:

aα, aβ, bα, bβ ∼ N(0, 1) (7)

Table 5. Gamma Bayesian Model descriptions and parameter estimates.

Model
Label

Functional Form for
α 1,3 aα bα cα dα eα fα gα

B1 aα + bα × CAPE 2.631 ± 0.136 1.156 ± 0.104 NA NA NA NA NA
B2 aα + bα × (CAPE ×

Pr) 2.474 ± 0.132 1.060 ± 0.108 NA NA NA NA NA
B3 aα + bα × RH 1.860 ± 0.093 0.007 ± 0.013 NA NA NA NA NA
B4 aα + bα × Rsds 2.108 ± 0.106 0.604 ± 0.059 NA NA NA NA NA
B5 aα + bα × T 2.054 ± 0.106 0.549 ± 0.056 NA NA NA NA NA
B6 aα + bα × Ps 1.699 ± 0.086 0.007 ± 0.014 NA NA NA NA NA
B7 aα + bα × Pr 1.713 ± 0.085 0.120 ± 0.083 NA NA NA NA NA
B8 aα + bα × U10 1.818 ± 0.091 0.006 ± 0.012 NA NA NA NA NA
B9 aα + bα × Rsds + cα

× T 2.204 ± 0.115 0.103 ± 0.106 0.458 ± 0.106 NA NA NA NA

B10 aα + bα × Rsds + cα
× T + dα × RH 2.208 ± 0.113 0.127 ± 0.115 0.503 ± 0.113 0.094 ± 0.120 NA NA NA

B11
aα + bα × Rsds + cα
× T + dα × RH + eα

× U10
2.390 ± 0.132 0.204 ± 0.128 0.394 ± 0.137 0.089 ± 0.130 −0.186 ± 0.096 NA NA

B12
exp(aα + bα × Rsds +
cα × T + dα × RH +
eα × U10 +fα × Pr)

0.970 ± 0.050 0.276 ± 0.077 0.009 ± 0.085 −0.144 ± 0.078 −0.172 ± 0.057 0.303 ± 0.073 NA

B13

exp(aα + bα × Rsds +
cα × T + dα × RH +
eα × U10 +fα × Pr +

gα × Ps

1.096 ± 0.051 0.181 ± 0.080 0.174 ± 0.098 0.028 ± 0.088 −0.265 ± 0.061 0.128 ± 0.077 −0.281 ± 0.071

Model
Label

Functional Form for
β 2,3 aβ bβ cβ dβ eβ fβ gβ

B1 aβ + bβ × CAPE 7.552 ± 0.415 0.683 ± 0.282 NA 4 NA NA NA NA
B2 aβ + bβ × CAPE × Pr 7.116 ± 0.411 0.654 ± 0.287 NA NA NA NA NA
B3 aβ + bβ × RH 5.860 ± 0.331 1.291 ± 0.151 NA NA NA NA NA
B4 aβ + bβ × Rsds 6.247 ± 0.355 0.020 ± 0.039 NA NA NA NA NA
B5 aβ + bβ × T 6.080 ± 0.351 0.049 ± 0.088 NA NA NA NA NA
B6 aβ + bβ × Ps 5.063 ± 0.298 0.295 ± 0.152 NA NA NA NA NA
B7 aβ + bβ × Pr 5.141 ± 0.297 0.714 ± 0.284 NA NA NA NA NA
B8 aβ + bβ × U10 5.664 ± 0.325 1.212 ± 0.167 NA NA NA NA NA

B9
aβ + bβ × Rsds + cβ

× T
6.849 ± 0.394 −1.282 ± 0.329 0.403 ± 0.344 NA NA NA NA

B10
aβ + bβ × Rsds + cβ

× T + dβ × RH
6.880 ± 0.386 −1.136 ± 0.354 0.706 ± 0.378 0.571 ± 0.360 NA NA NA

B11
aβ + bβ × Rsds + cβ

× T + dβ × RH + eβ

× U10
7.601 ± 0.469 −1.138 ± 0.404 0.695 ± 0.458 0.559 ± 0.405 0.622 ± 0.325 NA NA

B12
exp(aβ + bβ × Rsds +
cβ × T + dβ × RH +
eβ × U10 + fβ × Pr)

2.163 ± 0.056 −0.102 ± 0.083 −0.052 ± 0.089 0.001 ± 0.094 −0.020 ± 0.066 0.026 ± 0.083 NA

B13

exp(aβ + bβ × Rsds +
cβ × T + dβ × RH +
eβ × U10 + fβ × Pr +

gβ×Ps)

2.312 ± 0.056 −0.132 ± 0.082 −0.079 ± 0.105 0.085 ± 0.097 −0.061 ± 0.069 −0.087 ± 0.083 −0.020 ± 0.083

1 α is the shape parameter of the gamma distribution. 2 β is the scale parameter of the gamma distribution.
3 Climate predictors include convective available potential energy (CAPE), CAPE × precip (CAPE × Pr), relative
humidity (RH), shortwave radiation (Rsds), temperature (T), surface pressure (Ps), precipitation (Pr), and wind
(U10). 4 NA values indicate models that do not include that parameter.

These models repeat the numerical naming convention of the Linear Models and
gamma GLMs: B1–B2 model CAPE-based relationships, B3-B8 model individual near-
surface climate relationships, and B9–B13 model the additive relationships among near
surface climate variables. To ensure that α and β remain positive, models B12 and B13
apply a log link function. Parameter values were estimated in the ‘Rstan’ package [36]
using Hamiltonian Monte Carlo with the No-U-Turn Sampler in R [35]. Four Markov
Chain Monte Carlo chains were run to estimate the model parameters. Chain convergence
was assessed using the Gelman-Rubin statistic and trace plots were examined to confirm
parameter stability.
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2.3. Model Evaluation

Metrics for comparing model performance (Figure 2) include Normalized Root Mean
Squared Error (nRMSE), Pearson correlation between observed and predicted, skill score
(S-score), spatial correlation, anomaly correlation coefficient (ACC), and Normalized RMSE
of anomalies. All metrics were calculated from the test data.

 

Figure 2. Comparison of performance across modeling approaches and predictor variables. (a) Normalized
root mean squared error (nRMSE). (b) Correlation between observed and predicted values. (c) S-score.
(d) Anomaly correlation coefficient (ACC). (e) Normalized root mean squared error of Anomalies
(nRMSE of Anomalies). For all plots, the right-most points indicate the best performing model (the
x-axis of plots (a,f) have been reversed to reflect this). The y-axis of each plot contains the climate
variables that a given model predicts lightning strike rate from, including convective available
potential energy (CAPE), CAPE × precipitation (CAPE × Pr), relative humidity (RH), shortwave
radiation (Rsds), temperature (T), surface pressure (Ps), precipitation (Pr), and wind (U10). Color
indicates modeling approach; see Table 1 for model descriptions and definitions. All metrics were
calculated using the test data [27,28].

nRMSE was calculated as RMSE divided by the observed mean. When nRMSE values
are greater than 0.6, it is generally interpreted as a good model fit while values below
0.75 indicate high error. Values of correlation between observed and predicted close to
1 suggest good model fit, less than 0.5 suggest weak fit, and less than 0 suggest an
inverse relationship.
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To assess how well models reproduce the entire probability distribution of values,
the S-score (Figure 2c), derived from Perkins et al. (2007) [37], was applied as a metric to
compare simulated and observed probability density functions. It was calculated as:

Sscore = ∑n
i=1 min

(
Pobs,i, Ppred,i

)
(8)

where Pobs,i and Ppred,i are the relative frequencies of observed and predicted values in bin
i, and n is the total number of bins (here, n = 15). S-score values range from 0 to 1, where
1 indicates a perfect match between the model’s simulated distribution and the observed
lightning strike rates, and lower values indicate increasing model bias.

Spatial correlation quantifies the ability of models to reproduce the geographic pat-
tern of observed lightning rates. It was calculated as the Pearson correlation coefficient
between observed and predicted mean lightning strike rates across all grid cells, averaged
over the study period. Values close to 1 indicate that the model successfully reproduces
spatial gradients, whereas values near 0 indicate little correspondence with observed
spatial patterns.

The anomaly correlation coefficient measures how well models capture interannual
variability in lightning occurrence. It is calculated as the Pearson correlation between
observed and predicted annual-mean lightning anomalies, obtained by subtracting the
six-year mean from each year’s mean. High positive values (approaching +1) indicate that
the model reproduces year-to-year fluctuations above and below the mean; values near
0 indicate no skill, and negative values indicate the model predicts anomalies in the opposite
direction of observations.

Normalized RMSE of anomalies assesses the magnitude of error in interannual vari-
ability. Observed and predicted annual anomalies were first computed relative to the
six-year mean, and RMSE was calculated as the square root of the mean squared difference
between them. This was then divided by the standard deviation of observed anomalies
to get nRMSE of anomalies. Values below 1 indicate that the model reproduces not only
the direction but also the magnitude of interannual variability, while values greater than
1 indicate that model error is larger than the observed anomaly record. We acknowledge
the use of OpenAI’s ChatGPT (version 4) to aid in code development, and model analysis.
All code was tested by the authors.

3. Results
Models C1–C5, based on CAPE × precipitation as in Chen et al. (2021) [9], pro-

vided a baseline for comparison. Across all five model variants, nRMSE ranged narrowly
from 0.63–0.67, indicating moderate error. Correlations with observed lightning were
modest (r ≈ 0.43–0.44), and S-scores were generally high (0.62–0.72) (Figure 2a–c). Rela-
tive to other single near-surface predictors, spatial correlations were strong (≈0.44–0.45)
(Figure 2d). Anomaly correlations (≈0.22) and nRMSE of anomalies (≈0.49–0.51) from
CAPE outperformed single-variable near-surface predictions, except for shortwave radia-
tion (ACC ≈ 0.47–0.57 and nRMSE of anomalies ≈ 0.40–0.47) (Figure 2d–f). While all five
models yield similar performance, C1 (Power Law model: a(CAPE × P)b) stands out with
the highest S-score.

To assess relative contributions of near-surface predictors, we conducted a random
forest importance analysis, which indicated that shortwave radiation, near-surface air
temperature, and surface pressure were most influential (Figure 3). However, excluding
individual variables generally reduced model performance, so all six predictors were
retained in the final multivariable fits.
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Figure 3. Variable importance from the random forest analysis predicting lightning strike rates.
Importance is quantified as (a) the percentage increase in mean squared error (% Increase in MSE)
when each predictor is permuted and (b) the total node impurity (measured by the Gini index)
attributed to each predictor across all trees. Higher values indicate greater predictor influence.
Predictors include shortwave radiation (Rsds), surface pressure (Ps), relative humidity (RH), wind
(U10), temperature (T), and precipitation (Pr).

Under all modeling approaches, models that predict lightning strike rate from a single
near-surface climate variable do not perform as well as those that rely on CAPE-based
relationships (Figure 2). When applied individually, the near-surface predictors varied
widely in their ability to reproduce lightning occurrence. Shortwave radiation performed
best, achieving relatively strong spatial correlations (N4: r = 0.48; G4: r = 0.46; B4: r = 0.20)
and moderate anomaly correlations (ACC ≈ 0.47–0.57). Wind also showed moderate skill
(spatial correlation up to r = 0.41; ACC up to 0.55). By contrast, surface pressure and
precipitation performed poorly across nearly all metrics, with correlations near zero and
weak or negative ACC values. Temperature and relative humidity fell in between, with
modest distributional skill (S-scores ≈ 0.51–0.61) but limited temporal tracking.

Combining predictors markedly improved model skill. For the linear models, perfor-
mance improved steadily as additional variables were added: from N9 (SWR + T; cor = 0.44,
spatial cor = 0.51) through N12 (SWR + T + RH + W + P; cor = 0.61, spatial cor = 0.65),
culminating in N13, which used all six predictors and achieved the highest overall scores
(nRMSE = 0.54, cor = 0.64, S-score = 0.78, spatial cor = 0.69, ACC = 0.72, nRMSE of
anomalies = 0.34). The gamma GLMs followed a similar trajectory, with G13 (all predictors)
achieving strong skill (nRMSE = 0.54, cor = 0.63, spatial correlation = 0.67, S-score = 0.79,
ACC = 0.69, nRMSE of anomalies = 0.36). However, excluding surface pressure in the
Bayesian approach (B12) achieves the best fit across all metrics (nRMSE = 0.86, cor = 00.18,
spatial cor = 0.22, S-score = 0.86, ACC = 0.48, nRMSE of anomalies = 0.45).

When evaluating modeling approaches, clear differences emerged. Linear Gaussian
models and Gamma GLMs both demonstrated strong improvements when multiple near-
surface predictors were included. These models were the only ones to achieve low nRMSE
(0.54), high correlation between observed and predicted, and high spatial correlations
(>0.65), indicating their ability to reproduce geographic gradients. Bayesian gamma models
(B1–B13) stand apart. While ACC and nRMSE of anomalies are comparable to those of
the linear models and gamma GLMs and their S-scores were uniformly the highest, they
consistently failed to reduce error and capture spatial structure. For example, nRMSE
values for models B1–B13 ranged from 0.84–1.07, with no overlap with any other model
(nRMSE ≈ 0.54–0.70). nRMSE values less than 0.75 indicate high error, underlining signifi-
cant performance issues in the Bayesian models.

This divergence between distributional skill and spatiotemporal skill suggests that
Bayesian models may be overfit to the central tendency of the data, reproducing overall
distributions but not spatial gradients. This is reflected in Figure 4, which compares predic-
tions from models N13, G13, and B12. These models were selected for comparison because
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they were the best predictors of lightning within their respective modeling approaches.
Model B12, which applies the Bayesian approach, more closely reproduces the right skewed
distribution of observed lightning strike rates (Figure 4a). However, models N13 and G13
make predictions closer to the observed values, as evidenced by low residuals (Figure 4b).

 

Figure 4. Density plots of model predictions and residuals. (a) Kernel density estimates (KDE) of
lightning strike rate, with color and line type representing observed lightning strike rate (red) and
lightning strike rates predicted from models N13, G13, and B12. Negative strike rates are a result
of KDE smoothing. (b) KDE of residuals (observed—predicted lightning strike rate) for models
N13, G13, and B12. Models N13 and G13 simulate lightning from six near-surface climate variables:
relative humidity, shortwave radiation, temperature, surface pressure, precipitation, and wind. B12
excludes surface pressure.

A spatial comparison between observed and predicted lightning strike rates (Figure 5)
reflects the spatial correlation values (Figure 2d). Predictions from the linear model (N13)
and gamma GLMs (G13) capture the latitudinal gradient seen in the observed data. How-
ever, Bayesian model predictions (B12) do not reflect this spatial gradient and the spatial
correlation of predictions from the Bayesian approach (B1–B13) never outperform the
CAPE-based models (C1–C5). Plotting observed against predicted strike rate (Figure 5)
provides additional insight into the accuracy of predictions at each grid point. The
1:1 lines show perfect agreement between predictions and observations. The linear model
(Figure 6a) predicts low strike rates well but underestimates higher values. The gamma
GLM (Figure 6b) slightly improves upper-end predictions but tends to overestimate low
values and still underpredicts beyond ~0.8 strikes/km2/month. The gamma Bayesian
model (Figure 6c) captures the observed spread but shows a large amount of scatter around
the 1:1 line, indicating much less precision at individual locations.

All three modeling approaches that incorporate multiple near-surface predictors (N13,
G13, B12) better capture temporal anomalies than the CAPE-based models (Figure 2e,f),
both in terms of year-to-year fluctuations (ACC > 0) and magnitude of interannual error
(nRMSE of anomalies < 1.0; model error is less than anomaly spread). However, model
performance in terms of temporal tracking deteriorates when surface pressure is added
to the parameterization (N13, G13, B13), as reflected in lower ACC (from 0.78/0.81/0.79
to 0.72/0.69/0.48 with Ps added, respectively) and higher nRMSE of anomalies (from
0.31/0.30/0.30 to 0.34/0.36/0.45 with Ps added, respectively). Figure 7 compares deviations
from the six-year observed average with the outputs of models C1, N13, G13, and B12
(again selected as the best performers within their respective approaches). During the first
half the study period, the CAPE-based model (C1) fails to reproduce deviations seen in the
observed data, underpredicting lightning strike rate. All four models also underpredict
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strike rate in 2006 and fail to capture the magnitude of deviation from the mean in 2010.
Overall, all models generally track interannual changes in the observed mean.

Figure 5. Spatial comparison of observed and predicted lightning strike rates. Raster cells are
colored by lightning strike rate (strikes/km2/month) averaged across six summers (2005–2010) of
observed data and predictions from models N13, G13, and B12. See Table 1 for model descriptions
and definitions. All data are from the test set; white raster cells indicate latitude/longitude points not
included in the test data due to the random splitting of the data into train (80%) and test (20%) sets.

Figure 6. Observed versus predicted lightning strike rates. The dotted 1:1 line indicates perfect model
performance. All axes are in units of lightning strikes/km2/month. The x-axis in each plot shows
the observed strike rates, while the y-axes are predictions from (a) model N13, (b) model G13, and
(c) model B12.
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Figure 7. Interannual variability of observed and predicted lightning strike rates in the Northeastern
United States, 2005–2010. Symbols show annual mean strike rates for each model, with vertical bars
indicating one standard deviation across grid cells. The black dotted line marks the 6-year observed
mean. Colors and shapes distinguish models: observed lightning from the Vaisala Lightning Detection
Network (red crosses); the CAPE-based model C1 from Chen et al. (2021) (yellow circles) [9]; the linear
model N13 (purple triangles); the Gamma GLM G13 (magenta squares); and the Gamma Bayesian
model B12 (orange diamonds). These models were chosen as representatives of each modeling
approach (C, N, G, B) because they generally performed best across most evaluation metrics (see
Figure 2).

4. Discussion
Our analysis demonstrates that near-surface predictors, when used in multi-variable

models, can outperform CAPE-based approaches. While CAPE-based models capture some
aspects of lightning occurrence, they fall short in reproducing spatial gradients, temporal
variability, and the magnitude of strike rates. Among modeling approaches, the Gamma
GLMs offer the strongest balance across evaluation metrics while ensuring physically
realistic (non-negative) predictions. Nonetheless, linear models do achieve slightly higher
accuracy despite generating occasional negative values. Incorporating all six near-surface
predictors yields the most robust results overall, except when capturing temporal anomalies
is the priority. In those cases, excluding surface pressure (models N12/G12) improves
ACC and nRMSE of anomalies (Figure 2e,f), though retaining it (models N13/G13) remains
advantageous for reproducing spatial gradients (Figure 2d). Bayesian approaches show
strength in reproducing overall frequency and temporal distributions but struggle to resolve
geographic structure, underscoring the tradeoff between capturing broad statistical patterns
and representing spatial dynamics.
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This divergence in performance metrics between the simpler models (linear and
Gamma GLMs) and Bayesian models reflects fundamental differences in how each approach
makes predictions (Table 1). Linear and gamma GLMs estimate mean lightning strike rate
(E[rsi]) and optimize for low residual variance, leading to strong point-prediction accuracy.
In contrast, Gamma Bayesian models estimate the full distribution of lightning strike
rates by modeling both the shape and scale parameters and sampling from the gamma
distribution ( rs ∼ Gamma(α, β)). This enables the model to reproduce variability and
extremes (S-score is improved), but at the cost of spatial and point-accuracy (nRMSE and
correlations worsen). These findings underscore a broader caution in model selection:
validation success on a limited set of metrics may miss weaknesses elsewhere. By testing
our models across multiple metrics, we show that, while less sophisticated, simpler models
can outperform a more advanced approach such as a Bayesian model.

Capturing lightning extremes is particularly important in the context of wildfire.
The S-score applied here was developed by Perkins et al. (2007) as a method for com-
paring the probability density functions (PDFs) of predictions from climate models with
observations [37]. They argue that simply evaluating the mean does not capture the full
range of variability within the data and that rare events provide equally important infor-
mation. This perspective is supported by Katz and Brown (1992), who demonstrate that
the tails of a climate distribution are more sensitive to changes in variability than the mean,
underscoring the need to model both the mean and distribution of climate events [38].

In this study, however, no single model successfully captured both the observed
extremes and accurate point predictions. One contributing factor to this outcome is our
decision to train models at seasonal scales, which introduces important trade-offs. Aggregat-
ing to a seasonal resolution smooths out storm-level detail. As a result, our models cannot
resolve the storm-level processes that produce extreme lightning events and predictions
should be interpreted as seasonal tendencies, rather than event-level forecasts.

Despite these limitations, there are advantages to aggregating to a seasonal time scale
in the context of our objectives. First, it allows models to learn broader relationships
between climate and lightning. Second, long term reanalysis data (including paleoclimate
reconstructions) increase in bias and uncertainty at finer timescales. These data do not
contain information at the storm level, making lightning predictions from fine-grained data
infeasible. Finally, because our primary aim is to understand the long-term response of
lightning to climate trends, seasonal aggregation is an appropriate granularity.

Future work can improve the representation of extremes while preserving point
accuracy, by (1) developing models at finer temporal scales, which would reduce the
influence of single extreme events on seasonal statistics [39,40], and (2) exploring alternative
machine-learning methods, which may capture nonlinear relationships between near-
surface predictors and lightning occurrence more effectively [41].

Spatial gradients also provide a critical test of model behavior. Models N13 and G13
successfully capture the observed decline in lightning activity with latitude (Figure 5). This
gradient has been linked to several factors, including a reduction in cold cloud depth [18,19]
and decreasing CAPE at higher latitudes [8], and weaker surface heating due to lower
solar insolation [42]. Our results are consistent with this mechanism: both CAPE and
shortwave radiation decline with latitude (Figure 1c,g) and shortwave radiation emerged
as the strongest near-surface predictor in both the random forest analysis and single-
variable models (Figures 2 and 3). Because surface heating and radiation drive convection,
the performance of shortwave radiation in predicting lightning frequency highlights its
physical relevance, even though it is indirect compared to CAPE.

Beyond shortwave radiation, other near-surface predictors also offer physically mean-
ingful insights, as shown by increased accuracy upon adding them to our models:
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1. Surface pressure saw high importance in the random forest analysis, but low stand-
alone performance and degraded temporal accuracy when used in combination with
the other five near-surface variables. This is reflected by [43], who found that pressure-
derived indices can successfully identify convective environments, but cannot capture
the timing of individual events. Pressure does not show large year-to-year variability,
particularly at a seasonal resolution, reducing its ability to track interannual changes
in lightning.

2. Surface temperature demonstrated moderate predictive skill relative to other single
variable models. Prior studies have shown that elevated surface temperatures coin-
cide with lightning [44], which may reflect boundary-layer thermodynamics, where
warmer surface temperatures increase air buoyancy.

3. Wind speed demonstrated moderate to low importance in the random forest analysis,
but performed well in terms of temporal accuracy. Wind near the surface plays a
dual role in convective processes. It can aid in the development of a convective
storm by delivering warm, humid air and enhancing heat exchange. However, strong
surface wind speeds will prevent the temperature and humidity layers associated
with convection from forming [45].

4. Precipitation, by contrast, ranked low in both importance and predictive skill when
used alone. While precipitation is often used as a proxy for convective activity, its poor
performance here may come from two factors. First, aggregating to a seasonal scale
smooths out storm-level events. Second, the ERA5 precipitation data we used includes
both convective and stratiform components [27]. Including stratiform precipitation,
which is not usually associated with lightning, likely dilutes the signal.

5. Finally, relative humidity also had low stand-alone importance and temporal accuracy
but improved model performance when included with other variables. While relative
humidity has been linked to lightning occurrence through its role in cloud formation
and convective efficiency [46], it alone does not trigger convection; high relative
humidity reduces the energy required for saturation, but without accompanying
factors such as instability and lift, storms are unlikely to form. Moreover, surface
relative humidity may not represent layers of low or high moisture in the upper
atmosphere important to convection.

These findings highlight that the relationship between near-surface variables and
lightning are complex and shaped by interactions among multiple atmospheric processes.
The relationships identified here for the NE US may not be directly transferrable to other
regions and retraining of models will be necessary to account for differing convective
regimes. While our models demonstrate that near-surface predictors can match the perfor-
mance of CAPE, several limitations should be considered. With limited access to lightning
observations from Vaisala, the training period is relatively short (2005–2010). Additionally,
the NE US is a relatively low-lightning region, limiting our models’ generalizability to
regions of high lightning activity. To address this, future work could expand our approach
to a longer climatological period and a larger region as the methodological framework we
have developed remains widely applicable. By providing a path toward reconstructing
lightning activity from long-term paleoclimate datasets, this work helps lay the foundation
for improved understanding of past climate-lightning-fire interactions and their relevance
for anticipating future wildfire regimes.

5. Conclusions
This study demonstrates that lightning can be predicted from near-surface climate

variables alone, providing an alternative to CAPE-based approaches in contexts where
upper-air data are unavailable. Gamma GLMs balance realistic, non-negative predictions
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with strong accuracy. Incorporating all six predictors produced the most robust results,
although excluding surface pressure improved temporal anomaly predictions. This frame-
work is transferable to regions outside the NE US, though retraining with local lightning
and climate observations is necessary. These advances will enable more robust reconstruc-
tions of past seasonal lightning activity and its role in shaping natural wildfire regimes
under changing climates.
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