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ABSTRACT

Themountain regions of the northeasternUnited States are a critical socioeconomic resource for Vermont,

New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are

important tools for climate change risk assessment at regional scales, even the increased spatial resolution of

statistically downscaled GCMs (commonly ;1/88) is not sufficient for hydrologic, ecologic, and land-use

modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of

topographically downscaled, high-resolution (3000), daily 2-m maximum air temperature; 2-m minimum air

temperature; and precipitation simulations are developed for the mountainous Northeast by applying an

additional level of downscaling to intermediately downscaled (1/88) data using high-resolution topography and
station observations. First, observed relationships between 2-m air temperature and elevation and between

precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to

enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically

downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling

adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation

stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature.

Topographic downscaling also improves mean precipitation but not daily probability distributions of pre-

cipitation.Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately

downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjust-

ment increases, more value is added to the topographically downscaled product.

1. Introduction

Global climate models (GCMs) are essential for pro-

jecting future climate; however, despite the rapid advance

in their ability to simulate the climate system at increasing

spatial resolutions, GCMs cannot capture well local and

regional (,102km) climate features (Taylor et al. 2012).

For example, where elevation and land–water boundaries

vary on the scale of 100–102km, hydrological and eco-

logical impacts modeling will benefit from high-

resolution climate data. There have been a variety of

efforts to bridge this gap in resolution, broadly referred to

as downscaling, that generally fall into one of two cate-

gories, dynamical (Mearns et al. 2009; Giorgi et al. 2009;

van der Linden and Mitchell 2009) or statistical (Wilby

et al. 1998; Maurer and Hidalgo 2008; Ahmed et al. 2013;

Brekke et al. 2013).
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Statistically downscaled GCM projections have

been used for a variety of applications, including

water resources and hydrology (Wood et al. 2004;

Rajagopal et al. 2014), surface (2-m air) temperature

(Pierce et al. 2013), human health (Petkova et al.

2013), extreme precipitation events (Norton et al.

2011; Sunyer et al. 2012), wildfire (Westerling and

Bryant 2008; Abatzoglou and Brown 2012), agricul-

ture (Islam et al. 2012; Rosenzweig et al. 2014), and

snowfall (Huntington and Niswonger 2012; Guilbert

et al. 2014). Typically, the spatial resolution of sta-

tistically downscaled products is constrained by the

need for a gridded target observational dataset at that

resolution. Over the contiguous United States, high-

resolution gridded observations are available at 1/88
(;12 km), with the most recent datasets extending to
1/168 (Maurer et al. 2002; Livneh et al. 2013).

While the utility of statistically downscaled data at 1/88,
hereafter referred to as intermediately downscaled, in

climate change impacts and adaptation analyses is clear,

highly tailored and parameterized climate impacts

models (e.g., hydrologic, ecosystem, crop, and land use)

are increasingly able to ingest and utilize finer-scale

data. Intermediately downscaled projections have a

significantly improved spatial resolution relative to the

GCMs from which they originate. Nevertheless, their

coarse resolution compared to impacts models poses an

obstacle to accurate projections of hydrologic, ecosys-

tem, etc. dynamics determined by variability in climate

occurring at sub-1/88 spatial scales.
Four methods of creating climate change projections

at higher spatial resolution than typical downscaled

products (1/88), hereafter referred to as high resolution,

are dynamical downscaling, interpolation, stochastic

weather generation, and empirical climate relationships.

Many regional climate models (RCMs) now have

nonhydrostatic cores, eliminating the hydrostatic

limitation in spatial resolution of approximately 10 km

(Dudhia 1993). However, running an RCM at a reso-

lution of 10 km or higher over long time periods is

extremely computationally intensive. Further, the

setup of such high-resolution simulations raises a

number of unique issues associated with the need for

multiple nested model runs, very small time steps, and

parameterization. For these reasons, RCMs are not

typically run at very high (e.g., 3000 or approximately

1 km) resolution.

Interpolation relies on simple horizontal distances or,

in more sophisticated implementations, classification

and relationships between stations. For example,

Hijmans et al. (2005) used a thin-plate smoothing spline

algorithm to interpolate station data to 3000 resolution
using latitude, longitude, and elevation as independent

variables. Additional climatological interpolation tech-

niques are reviewed in Hartkamp et al. (1999).

Stochastic weather generators can be set to any arbi-

trary resolution, although the output will be constrained

by the resolution of the source data (e.g., observations

and GCM simulations) and a variety of issues must be

carefully considered to preserve the spatial and tempo-

ral coherence of climate (e.g., surface temperature,

precipitation, humidity) signals.

Empirical climate relationships use high-resolution

data that have a physically based statistical relationship

to climate, typically topography, slope, aspect, or some

combination of the three. Daly et al. (2000) developed

the Parameter-Elevation Regressions on Independent

Slopes Model (PRISM), which linearly adjusts climatic

variables using a digital elevation model (DEM), and

adds weighting information from terrain aspect, coastal

proximity, and deviation in the height relative to

smoothed topography to create a 2.50 time series of

monthly maximum surface temperature, minimum sur-

face temperature, and precipitation. Variants of this

methodology have been used to produce a number of

high-resolution climatic datasets (PRISM Climate

Group 2014). Liston and Elder (2006) developed a me-

teorological model that uses empirical relationships

between elevation and precipitation and between ele-

vation and surface temperature to produce uniform,

high-resolution atmospheric forcings for terrestrial

simulations. Liston and Elder (2006) also use elevation

to adjust vapor pressure, and slope and curvature of

topography to adjust wind speed and direction.

Our objective was to create a 3000 (;1 km) dataset of

daily maximum surface temperature, minimum surface

temperature, and precipitation for the Lake Champlain

basin to aid in hydrological and ecological modeling of

potential climate impacts. Specifically, we develop and

evaluate an empirical method to calculate the relation-

ships between elevation and daily maximum surface

temperature, daily minimum surface temperature, and

precipitation over the region from station data, and then

use those relationships to downscale the 1/88 bias cor-

rection with constructed analogs (BCCA) dataset

(Brekke et al. 2013), creating a daily, 3000 time series

for 1970–99.

2. Methodology

a. Study region

We conduct our analysis in the mountainous

Northeast, a region that includes northern Vermont,

northeastern New York State, northern New Hamp-

shire, southwestern Maine, and southern Canada
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(Fig. 1). Within our study area there are four watersheds

of interest that drain into Lake Champlain: Lake Cham-

plain, Missisquoi, Lamoille, and Winooski. The primary

topographic features within this domain are the Green

Mountains, running through central Vermont; the Adir-

ondack Mountains, clustered in northeastern New York;

and the White Mountains, spanning northern New

Hampshire and westernMaine. Elevations range from

30 to 1340m MSL.

b. Climate data

Relationships between surface temperature (maxi-

mum and minimum) and elevation and between pre-

cipitation and elevation were derived from Global

Historical Climatology Network (GHCN)-Daily (Menne

et al. 2012) station observations. Data were down-

loaded from NOAA’s National Climatic Data Center

(NCDC; http://www.ncdc.noaa.gov/) and contain daily

measurements covering different periods between the

early 1900s and 2012. To maximize the number and

quality of observed data for analysis, we used stations

within and near the Lake Champlain basin that had

daily observations for a subset of BCCA temporal

coverage, 1970–99, with no more than 20% missing

values. The 98 stations selected (Fig. 1) were used

for GCM selection, elevation adjustment calcula-

tions, and analysis of the topographically downscaled

product.

Six simulations from phase 5 of the Coupled Model

Intercomparison Project (CMIP5) multimodel ensemble

downscaled to an intermediate resolution (1/88) using

BCCA (Brekke et al. 2013) were selected as source data

for topographic downscaling to high resolution (3000).
BCCA leverages observed climate data to both bias-

correct and statistically downscale GCM data; a full

description of BCCA methodology can be found in

Hidalgo et al. (2008), Maurer and Hidalgo (2008), and

Maurer et al. (2010). BCCA has a variety of attributes

that make it uniquely suited to evaluate climate change

over the Lake Champlain basin. BCCA is a daily prod-

uct with coverage of both the United States and south-

ern Canada, which is a requirement for use in hydrologic

applications in the Lake Champlain basin. In addition,

the BCCA ensemble is comprehensive. It includes a

total of nine GCMs run as part of phase 3 of the Coupled

Model Intercomparison Project (CMIP3) under two

Special Report on Emissions Scenarios (SRES) emis-

sions scenarios (Nakićenović and Swart 2000) and 20

GCMs run as part of CMIP5 under two representative

concentration pathways (RCPs; Moss et al. 2010).

BCCA has been previously used in the Northeast to

assess climate change (Ahmed et al. 2013; Guilbert et al.

2014). Ahmed et al. (2013) explore changes in total

number of days withmore than 10mm for oneGCMand

SRES scenario by midcentury, finding that BCCA

predicts a relatively small change in days with more

than 10mm relative to other statistical downscaling

methods across the Northeast by midcentury. Guilbert

et al. (2014) used BCCA data from four GCMs

and two RCPs, showing increases in temperature of

FIG. 1. Downscaling domain topography from 3000 DEM and climate station locations color-

coded by station elevation. The study area contains 98 stations that were selected based on

coverage for 1970–99 with no more than 20% missing values.
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approximately 4.58C and increases in precipitation of

approximately 0.3mmday21 in the Lake Champlain

basin by the end of the century. Guilbert et al. (2014)

also explored climate change impacts on high-elevation

snowfall, finding an approximate 50% decrease in an-

nual snowfall at six major ski resorts in the Northeast by

the end of the century.

CMIP5 BCCA ensemble members, differentiated

by source GCM, were selected based on their ability to

accurately reproduce station observations over 1970–

99. The BCCA datasets were bias corrected using a

gridded observational dataset over the period 1950–

99, so comparing long-term surface temperature and

precipitation averages of BCCA ensemble members is

not a useful metric for discerning accuracy across

GCMs. Instead, we examine the overlap of the prob-

ability distribution for daily surface temperature and

precipitation using a skill score defined in section 2d.

We used this metric to select the three most accurate

CMIP5 BCCA ensemble members for average surface

temperature—L’Institut Pierre-Simon Laplace Cou-

pled Model, version 5A, low resolution (IPSL-CM5A-

LR); the Norwegian Climate Centre’s Norwegian

Earth System Model, version 1 (intermediate resolu-

tion) (NorESM1-M); and the Commonwealth Scientific

and Industrial Research Organisation and Bureau of

Meteorology’s Australian Community Climate and Earth-

System Simulator, version 1.0 (ACCESS1.0)—and pre-

cipitation—Max Planck Institute Earth System Model,

low resolution (MPI-ESM-LR); NorESM1-M; and

Geophysical Fluid Dynamics Laboratory Climate

Model, version 3 (GFDLCM3). Models were selected

based on mean surface temperature, calculated as

the average of maximum and minimum surface tem-

perature, to ensure a physically consistent set of

models for both maximum and minimum surface

temperatures.

c. High-resolution downscaling

The process used to topographically downscale

three BCCA ensemble members of maximum sur-

face temperature, minimum surface temperature, and

precipitation over the study area for 1970–99 con-

sisted of three basic steps. First, empirical relation-

ships between surface temperature and elevation and

between precipitation and elevation were derived.

Second, the 1/88 intermediately downscaled GCM

simulations were adjusted to a reference elevation

(200m MSL) using the derived relationships and a 1/88
DEM, then interpolated to a grid with the resolution

of 3000. Third, the 3000 interpolated data were topo-

graphically adjusted using the derived relationships

and a 3000 DEM.

1) ELEVATION ADJUSTMENT DERIVATION

Accurately defining the empirical relationships be-

tween surface temperature and elevation (i.e., lapse

rate) and between precipitation and elevation across the

Lake Champlain basin is a critical component of this

downscaling approach. To derive these relationships, we

leverage the dense meteorological station network of

the mountainous Northeast. While we could have also

used a gridded 1/88 dataset to derive these relationships,

it is possible that the averaging and interpolation used to

produce the gridded dataset could change or obfuscate

the surface temperature–elevation and precipitation–

elevation relationships. Further, the meteorological

stations in the mountainous Northeast are well distrib-

uted throughout the domain and include a range of el-

evations (Fig. 1). We used long-term averages of daily

data to reduce noise in the presentation of surface

temperature and precipitation elevation adjustment es-

timation; however, the values of elevation adjustments

found were confirmed to be identical for daily, monthly,

annual, and long-term averaged data.

For maximum and minimum surface temperature, we

calculated elevation adjustments that assume a linear

relationship between surface temperature and eleva-

tion, equivalent to deriving the lapse rate. This assumed

form of the temperature–elevation relationship is used

widely, including in downscaling applications (Daly

et al. 2000; Liston and Elder 2006). We found a signifi-

cant relationship between surface temperature and lat-

itude; however, there was no clear relationship between

surface temperature and longitude over the study area.

To account for the effect of latitude on the temperature

elevation adjustment, we ran a multiple linear re-

gression of the form:

T
sta

5T
o
2bf

sta
2 gz

sta
,

where Tsta (8C) is the station surface temperature, To

(8C) is the y intercept, zsta (m) is the station elevation,

fsta (8) is the latitude of the station, g (8Cm21) is the

elevation adjustment, and b [8C (8)21] is the latitude

adjustment. We find g and b by regressing station long-

term averaged daily surface temperatures 1970–99 ver-

sus elevation and latitude. The maximum daily surface

temperature regression is shown in Fig. 2a. Both g and b

are defined as positive when temperature decreases with

increasing elevation and latitude, respectively. The

values calculated for the maximum and minimum sur-

face temperature elevation adjustments were 5.928 and
4.858Ckm21, respectively, which are broadly consis-

tent with both the canonical environmental lapse rate

of 68Ckm21 (Barry 2008) and more sophisticated
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calculations of lapse rates over space and time (Rolland

2003; Liston and Elder 2006; Blandford et al. 2008;

Barry 2008).

For precipitation, we calculated an elevation adjust-

ment that assumed a nonlinear functional form based on

normalized differences, consistent with Liston andElder

(2006) and Thornton et al. (1997):

P
sta

5P
ref

2
411 x(z

sta
2 z

ref
)

12 x(z
sta

2 z
ref
)

3
5 ,

where Psta (mmday21) is the station precipitation, Pref

(mmday21) is the expected precipitation at the refer-

ence elevation across all stations in the domain, zsta (m)

is the station elevation, zref (m) is the reference eleva-

tion, and x (m21) is the elevation adjustment. We find x

and Pref by fitting long-term averaged daily station

precipitation data to the function above using maximum

likelihood estimation (Fig. 2b). In this case, x is defined

as positive when precipitation increases with increasing

elevation. We chose a reference elevation of 200mMSL

based on the domain average station elevation mean

(230m MSL) and median (161m MSL). The value cal-

culated for the precipitation elevation adjustment was

0.250 km21. This value is consistent with the range of the

elevation adjustment time series constructed by

Thornton et al. (1997), despite the fact that Thornton

et al. (1997) focused on the Pacific Northwest and lim-

ited their derivation of the elevation adjustment to

complex terrain.

2) INTERPOLATION

Once the 1/88 intermediate-resolution values are

translated to a reference elevation using the elevation

adjustments described above and a DEM aggregated to
1/88, they are then interpolated to a 3000 high-resolution
grid before final modification using a 3000 DEM and the

FIG. 2. Derivation of elevation adjustments for (a) max surface temperature, with upper and

lower yellow lines depicting the southern and northern boundary latitudes, respectively, and

(b) precipitation.
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elevation adjustments. A variety of methods exist for

spatial interpolation (Li and Heap 2014). We chose in-

verse distance weighting (IDW) interpolation because

of its relative simplicity, extensive use in climate app-

lications, and computational efficiency. The high-resolution

value (e.g., precipitation and surface temperature) is cal-

culated using intermediate-resolution grid cells weighted

by an inverse power of distance:

V
i
5

�
n

j51

V
j
/Dp

ij

�
n

j51

1/Dp
ij

,

where Vi is the value (e.g., precipitation and surface

temperature) at high-resolution grid cell i,Vj is the value

at an intermediate-resolution grid cell j, Dij is the dis-

tance between the coarse-resolution cell center j and the

high-resolution cell center i, p is IDWpower, and n is the

number of nearest-neighbor intermediate grid cells

contributing to the average. The value of p controls the

region of influence of each of the coarse cells. As p in-

creases, the region of influence decreases.

IDW interpolation requires two user-defined inputs:

the weighting power and the number of neighbors. We

ran a sensitivity analysis to find an optimal value for both

the weighting power and number of neighbors with the

objective to include information at a distance that

matches the scale of variation in the climate data (not

shown). Bymatching the scale of variation in the climate

data, we avoid oversmoothing the surface (too many

neighbors) and introducing unrealistic details or arti-

facts (too few neighbors). Based on this analysis and

exploring the sensitivity of IDW interpolation to a range

of values for weighting power and number of neighbors,

we chose values of 2 and 9 (3 3 3), respectively, which

maintain patterns in the original coarse surface tem-

perature and precipitation images while creating spa-

tially smooth data (Fig. 3). Our weighting power is

consistent with previous climate applications (Lloyd

2005). Because of the high degree of flexibility required

for our interpolation process, we coded our own IDW

interpolation function in R. We reproduced the results

of the IDW interpolation function contained in the R

package ‘‘gstat’’ (https://r-forge.r-project.org/projects/

gstat/) under several test cases to confirm the accuracy

of our interpolation function.

3) DOWNSCALING METHODOLOGY

We downscale BCCA using the calculated precipitation

and surface temperature elevation adjustments, a high-

resolution DEM, and IDW interpolation as follows.

First, precipitation and surface temperature values of

each intermediate-resolution cell are translated to the

reference elevation of 200m MSL by applying the

functions below. For surface temperature,

T
ref

5T
int
2 g(z

ref
2 z

int
) ,

where Tref (8C) is the surface temperature at refer-

ence elevation zref (m), Tint (8C) is the intermedi-

ately downscaled surface temperature at elevation

zint (m), and g (8Cm21) is the surface temperature

adjustment. For precipitation (Liston and Elder

2006),

P
ref

5P
int

2
411 x(z

ref
2 z

int
)

12 x(z
ref

2 z
int
)

3
5 ,

where Pref (mmday21) is the precipitation at refer-

ence elevation zref (m), Pint (mm day21) is in-

termediately downscaled precipitation at elevation

zint (m), and x (m21) is the precipitation elevation

adjustment.

Second, Tref and Pref are spatially interpolated from

the coarse to the fine grid using IDW. Based on an analysis

of spatial climate variability in the intermediate-resolution

data, we assign a weighting power of 2 and number of

neighbors of 9.

Finally, spatially interpolated surface tempera-

ture and precipitation values at the reference ele-

vation are translated to their actual elevation using

the derived elevation adjustments and a high-

resolution DEM, creating a daily, 3000 surface tem-

perature and precipitation dataset. For surface

temperature,

T
hightar

5T
highref

2 g(z
tar

2 z
ref
) ,

where Thightar (8C) is the high-resolution surface tem-

perature at the target elevation ztar, Thighref (8C) is the

high-resolution (spatially interpolated) surface temper-

ature at reference elevation zref (m), and g (8Cm21) is

the surface temperature adjustment. For precipitation

(Liston and Elder 2006),

P
hightar

5P
highref

2
411 x(z

tar
2 z

ref
)

12 x(z
tar

2 z
ref
)

3
5 ,

where Phightar (mmday21) is the high-resolution pre-

cipitation at target elevation ztar (m), Phighref (mmday21)

is the high-resolution (spatially interpolated) pre-

cipitation at reference elevation zref (m), and x (m21) is

the precipitation elevation adjustment.
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FIG. 3. Example climate data: BCCA and topographically downscaled BCCA (BCCA-

IA) for (top) IPSL-CM5A-LR max surface temperature and (bottom) MPI-ESM-LR

precipitation on 17 Jan 1970.
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d. Topographically downscaled climate data
evaluation

We evaluate our developed product by comparing

BCCA interpolated and elevation adjusted (BCCA-

IA), BCCA interpolated using IDW (BCCA-I), and

BCCA to station observations from 1970 to 1999.

Daily data, as opposed to monthly or annual, is of

critical importance for a variety of impacts assess-

ments (heat waves, floods, growing season length,

etc.). We therefore focus our analysis on the daily time

scale. BCCA-I is simply an interpolated version of

BCCA and does not include any explicit elevation

adjustments. In the context of this study it serves as a

reference high-resolution dataset with no additional

information. Specifically, it describes a simple

method that could be used for downscaling 1/88 climate

data to 3000 without topographic information or re-

lationships between surface temperature and elevation

and precipitation and elevation. Because the in-

terpolation is not done at the reference elevation, it

should not be considered an intermediate step between

BCCA and BCCA-IA.

We rely on three metrics to assess BCCA, BCCA-I,

and BCCA-IA against station observations. The first is

simply the absolute value of the bias, calculated as the

absolute value of the long-term mean of each daily cli-

mate product (i.e., BCCA, BCCA-I, and BCCA-IA)

minus the long-term mean of daily observed data. We

present this metric by station and averaged across all

stations in the domain. The change in absolute bias be-

tween BCCA, BCCA-I, and BCCA-IA is assessed rel-

ative to the absolute bias spread across the BCCA

ensemble.

The second metric we use to evaluate the climate

datasets is the skill score Sscore of Perkins et al. (2007).

The Perkins et al. (2007) skill score is an intuitive mea-

sure of the overlap between two probability distribu-

tions and is calculated using the following equation:

S
score

5 �
n

i51

min(Z
m
2Z

o
) ,

where n is the number of bins in the probability distri-

bution,Zm is the model frequency of values for bin i, and

Zo is the observed frequency of values for bin i (Perkins

et al. 2007). An Sscore close to zero denotes a poor sim-

ulation (nonoverlapping probability distributions), and

an Sscore close to one denotes an accurate simulation

(overlapping probability distributions). This measure is

uniquely suited for assessing daily temperature and

precipitation data and is a more rigorous standard than

assessing statistical moments such as mean and variance.

As in Perkins et al. (2007), we use a binning interval of

1mmday21 for precipitation and 0.58C for maximum

and minimum surface temperature. We use 0.03 as a

significant difference in Sscore based on a sensitivity test

of the skill score to sampling conducted by Perkins et al.

(2007) in which 100 partial probability distributions were

obtained by randomly sampling 75% of a full probability

distribution. The lowest partial probability distribution

Sscore found was 0.97; thus, the greatest difference be-

tween the partial and full probability distributions and

perfect overlap was 0.03 (Perkins et al. 2007). In addi-

tion to this threshold, we also consider the spread of

Sscore values across the BCCA ensemble members to

determine value added by the elevation adjustments.

The third metric we use to assess our topographically

downscaled product is root-mean-square deviation

(RMSD). To calculate this measure, the simulated and

observed daily time series of surface temperature and

precipitation are first ranked from lowest value to

highest value, as GCMs are not expected to simulate

shorter-term sequencing of climatic events (i.e., a GCM

should capture the frequency and magnitude of heavy

precipitation events, but is not expected to place those

events in the correct calendar years). Once rank or-

dered, the RMSD is calculated using the following

equation:

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(X
m
2X

o
)2

s
,

where n is the length of the data series, Xm is the model

value for ranked index i, andXo is the observed value for

ranked index i. Opposite of Sscore, low values of RMSD

demonstrate skill in simulation, with the ideal RMSD

value (i.e., perfect matching of the two ranked series)

being zero. To assess the value added by elevation ad-

justments using RMSD, we compare changes in RMSD

to the spread of RMSD values across the BCCA en-

semble members.

3. Results and discussion

First, we explore topographic downscaling at the sta-

tion level, presenting long-term averages and histograms

of station observations, gridded observations, BCCA,

BCCA-I, and BCCA-IA at two stations differentiated

by elevation: Burlington, Vermont (101m), and Mt.

Mansfield, Vermont (1204m). Next, we assess the per-

formance of BCCA, BCCA-I, and BCCA-IA for all

stations within the domain in the context of elevation

using Sscore and RMSD. Finally, we average the ab-

solute value of the bias, Sscore, and RMSD for all sta-

tions within the domain to evaluate the aggregate
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value added or removed by interpolation and eleva-

tion adjustment.

a. Burlington and Mt. Mansfield

Figures 4 and 5 show the daily probability distri-

butions of station observations, Maurer et al. (2002)

gridded observations, BCCA, BCCA-I, and BCCA-

IA for maximum surface temperature, minimum sur-

face temperature, and precipitation at Burlington and

Mt. Mansfield. Results are presented for the best-

performing BCCA ensemble member as described

above by variable, IPSL-CM5A-LR for maximum and

minimum surface temperature, and MPI-ESM-LR for

precipitation.

Overall the differences between BCCA-IA and

BCCA are relatively small at Burlington (Fig. 4), which

is a result of the nearest BCCA grid cell being only 20m

higher than the Burlington station. BCCA-I reduces the

average warm bias in BCCA maximum and minimum

surface temperature, though this improvement is rela-

tively small. BCCA-IA mean average maximum and

minimum surface temperatures are practically un-

changed from BCCA, a result of interpolation reducing

the bias and the elevation adjustment enhancing it. The

surface temperature elevation adjustment is uniform

across all days, which effectively shifts the histogram.

Therefore, the differences between BCCA-IA and

BCCA histograms (not shown) depend on the degree to

which the histogram shifts and the values of adjacent

bins and are largely inconsistent in sign and magnitude

across the surface temperature range. Mean precipita-

tion at Burlington is slightly improved in both BCCA-I

and BCCA-IA relative to BCCA. BCCA contains a

dry bias, interpolation alone (BCCA-I) increases aver-

age precipitation, and then the elevation adjustment

(BCCA-IA) decreases the amount of precipitation be-

cause the coarse BCCA grid cell is higher (119m) than

the high-resolution BCCA-IA grid cell (99m). As with

surface temperature the elevation adjustment is small,

but unlike surface temperature the elevation adjustment

is dependent on the initial value of precipitation and is

therefore not equal across the histogram. At Burlington

BCCA-IA reduces the frequency of dry days and very

small precipitation events (0–1mmday21) and increases

the frequency of most all other precipitation events

(not shown).

In contrast to Burlington, the difference in elevation

between the Mt. Mansfield station and the nearest

BCCA grid cell is large, 560m. Therefore, the elevation

adjustment substantially decreases surface temperature

and increases precipitation, and the relative effect of

interpolation is small. Gridded observations, BCCA,

BCCA-I, and BCCA-IA all overestimate surface tem-

perature at Mt. Mansfield (Figs. 5a,b). This average

overestimation of maximum surface temperature and

minimum surface temperature in BCCA-IA is reduced

FIG. 4. Daily histograms for Burlington station 1970–99: (a) max surface temperature from station observations, Maurer observations

(1/88), IPSL-CM5A-LRBCCA (1/88), IPSL-CM5A-LRBCCA-I (3000), and IPSL-CM5A-LRBCCA-IA (3000); (b)min surface temperature

from station observations, Maurer observations (1/88), IPSL-CM5A-LR BCCA (1/88), IPSL-CM5A-LR BCCA-I (3000), and IPSL-CM5A-

LR BCCA-IA (3000); and (c) precipitation from station observations, Maurer observations (1/88), MPI-ESM-LR BCCA (1/88), MPI-ESM-

LR BCCA-I (3000), and MPI-ESM-LR BCCA-IA (3000). Numbers in legend are mean values color-coded by dataset.
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by 2.888 and 2.758C, respectively, relative to BCCA. In

both cases, the elevation adjustment clearly adds value

to the dataset when compared to BCCA or BCCA-I.

Precipitation at Mt. Mansfield is also better reproduced

on average by BCCA-IA, with the elevation adjustment

process adding precipitation, resulting in a reduction of

the dry bias in BCCA by 0.88mmday21. In this case

interpolation alone exacerbates the underestimation of

precipitation by BCCA. While BCCA-IA precipitation

is markedly improved from BCCA on average, the dis-

tribution of precipitation still contains significant in-

accuracies, with the number of no- and low-precipitation

days being too low and not improved by the elevation

adjustment.

b. Elevation analysis

As topographic downscaling is a function of elevation,

we explore the value added or removed by BCCA-IA

relative to BCCA for all stations in the domain across

elevation. In this analysis, we explicitly assess the full

probability distribution of maximum surface tempera-

ture, minimum surface temperature, and precipitation

using mean absolute bias, Sscore, and RMSD. Figures 6,

7, and 8 show the difference between BCCA-IA and

BCCA, and BCCA-I and BCCA, for mean absolute

bias, Sscore, and RMSD, relative to station observations,

across the three variables and three ensemble members.

Improvements in reproducing the observed histogram

are by definition positive differences for Sscore and neg-

ative differences for absolute bias and RMSD.

Reductions in maximum surface temperature abso-

lute bias generally increase with increasing elevation

(Fig. 6a). Examining the overlap of the histograms using

Sscore, above 500m BCCA-IA maximum surface tem-

perature is generally closer to observations than BCCA

(Fig. 6b). For Lake Placid, New York (591m), and

Pinkham Notch, New Hampshire (612m), interpolation

only and interpolation and elevation adjustment both

add value to BCCA. For Mt. Mansfield and Mt. Wash-

ington (1909m) interpolation only reduces Sscore, but

interpolation and elevation adjustment significantly in-

crease Sscore. At all four of these stations, improvements

are well above the BCCA Sscore ensemble spread, and

also in excess of the 0.03 significance threshold described

above. These findings are supported by the RMSD re-

sults, which like Sscore show the benefits of topographic

downscaling above 500m (Fig. 6c). Below 500m rela-

tively smaller changes are found in BCCA-IA and

BCCA-I, with the sign of the change (i.e., whether value

is added or removed) depending on the station. In the

context of the analysis above, we note that while Bur-

lington is not the exception, it is also not the rule.

Whether value is added or removed by topographic

downscaling depends on the direction of the bias in the

BCCA ensemble member combined with both the ef-

fects of interpolation and the elevation adjustment. We

could have picked a BCCA ensemble member and sta-

tion for which BCCA-IA performed better than BCCA.

However, as the removed value at Burlington was rel-

atively small, so would have been the added value,

generally less than the spread of Sscore or RMSD across

BCCA ensemble members.

Qualitatively, the differences in BCCA-IA and

BCCA minimum surface temperature are similar to the

FIG. 5. As in Fig. 4, but for Mt. Mansfield station 1970–99.
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differences between BCCA-IA and BCCA maximum

surface temperature. The absolute bias of BCCA-IA is

generally reduced with increasing elevation (Fig. 7a).

Below 500m, Sscore adjustments are relatively small and

value is as likely to be added or removed from a station

depending on the initial bias of the BCCA product

(Fig. 7b). As withmaximum surface temperature, for the

stations above 500m, including Lake Placid, Mt.

Mansfield, and Mt. Washington, BCCA-IA generally

contains improvements in Sscore over BCCA. RMSD

corroborates the relatively small changes below 500m

andmore consistent and significant changes above 500m

(Fig. 7c).

Overall, topographic downscaling reduces the mean

absolute bias of BCCA precipitation (Fig. 8a), but when

assessed using the probability distribution, BCCA-IA

reduces the Sscore (Fig. 8b) and increases the RMSD

(Fig. 8c) at most stations across the domain. In many

cases, BCCA-I also contains a reduction in Sscore relative

to BCCA, suggesting that the smoothing associated with

interpolation is responsible for some of the removed

value. There are a number of stations that have a large

FIG. 6. Difference between BCCA-IA and BCCA, and BCCA-I

and BCCA, daily max surface temperature: (a) mean absolute bias,

(b) Sscore, and (c) RMSD for all stations in the domain displayed by

elevation 1970–99.

FIG. 7. As in Fig. 6, but for daily min surface temperature.
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reduction in Sscore relative to the BCCA ensemble

range, and at two stations (Burlington, Vermont, and

Coaticook, Canada) Sscore is reduced in excess of the

0.03 significance threshold. RMSD is also degraded in

BCCA-IA and BCCA-I relative to BCCA. However,

while both Sscore and RMSD yield the same general

conclusions, there are some differences by station re-

sulting from assessing frequency space (Sscore), which is

not weighted by precipitation amount, and the physical

variable space (RMSD), which is informed by the magni-

tude of the precipitation deviation amounts. For example,

BCCA-IA for Mt. Mansfield and Mt. Washington show

negligible changes in Sscore, but relatively large reductions

in RMSD. Physically, there are two reasons that seem to

be causing degraded Sscore and RMSD in BCCA-IA. On

average, BCCA underestimates dry days and very small

precipitation events (0–1mmday21) and overestimates

small precipitation events (1–5mmday21). Interpolation

exacerbates these biases by averaging across the nine

nearest neighbors, which smooths the signal spatially.

Unlike surface temperature, precipitation is highly spa-

tially heterogeneous; thus, the smoothing creates more

small precipitation events. Second, BCCA generally has a

dry bias across the domain (not shown). Therefore, as

precipitation is added by the elevation adjustment, more

events are pushed out of the 0–1mmday21 bin to the 1–

5mmday21 bin.

c. Domain-averaged performance

Tables 1–3 describe themean absolute bias, Sscore, and

RMSD for maximum surface temperature, minimum

surface temperature, and precipitation, respectively,

averaged across all stations in the domain. Specifically,

for each station and variable all three metrics were cal-

culated and then averaged across the 98 stations in the

domain. Maximum surface temperature mean absolute

bias is reduced in both BCCA-IA and BCCA-I relative

to BCCA (Table 1). While the improvement in mean

absolute bias in BCCA-I is less than the spread across

GCMs, the elevation adjustment reduces the mean ab-

solute bias in maximum surface temperature by 16%–

32%, depending on the GCM. The changes in Sscore
between BCCA-IA and BCCA maximum surface tem-

perature for each ensemble member are slightly larger

than the spread of Sscore values across BCCA ensemble

members, but remain well below the 0.03 significance

threshold. The increases in Sscore are likely a result of the

bias reduction; however, they are modest as the bias of

BCCA is low and errors in the shape of the probability

distribution are not well addressed by interpolation

or elevation adjustment. RMSD is reduced by in-

terpolation and elevation adjustment by 13%–20%

across the three BCCA ensemble members. This re-

duction for BCCA-IA relative to BCCA is much larger

than the range of BCCA RMSD.

The value added to minimum surface temperature is

similar to that of maximum surface temperature (Table 2).

Minimum surface temperature mean absolute bias is

reduced by both interpolation alone and interpolation

and elevation adjustment. BCCA-IA minimum surface

temperature mean absolute bias is 12%–22% less than

BCCAminimum surface temperaturemean absolute bias.

While this reduction inmean absolute bias is less than that

of maximum mean temperature, it is large compared to

differences inmean absolute bias across BCCAensemble

members. Minimum surface temperature changes in

Sscore across BCCA-IA and BCCA are positive but

FIG. 8. As in Fig. 6, but for daily precipitation.
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much smaller than the 0.03 threshold, and the differ-

ences between BCCA-IA and BCCA are slightly less

than the range of BCCA Sscore. Consistent with changes

in mean absolute bias and Sscore, RMSD decreases from

BCCA to BCCA-I to BCCA-IA, with overall reductions

in RMSD between BCCA-IA and BCCA of 7%–12%.

Unlike surface temperature, the mean absolute bias,

Sscore, and RMSD qualitatively differ on whether value

is added or subtracted to precipitation by interpolation

and adjustment (Table 3). Precipitation mean absolute

bias in BCCA-IA is reduced by 7%–15% relative to

BCCA. This reduction in mean absolute is somewhat

less than the difference in mean absolute bias across

BCCA ensemble members. There is little reduction in

the mean absolute bias of BCCA by interpolation only,

showing minimal value of BCCA-I for precipitation in

this domain. Changes in Sscore between BCCA-IA and

BCCA are negative, suggesting degraded performance

in BCCA-IA, and larger than the BCCA ensemble

spread of Sscore; however, they are well below the 0.03

significance threshold. The increase in RMSD between

BCCA-IA and BCCA is 6% for all BCCA-IA ensemble

members. Similar increases in BCCA RMSD are found

in BCCA-I, suggesting that, as described above, this

degradation of performance is primarily a result of

smoothing associated with interpolation. Smoothing

reduces the tails of the probability distribution (dry days

and large precipitation events) and overall variability

spatially, which are generally more pronounced in ob-

servations, thus decreasing Sscore and increasing RMSD.

We note that mean absolute bias is not as strongly de-

pendent on the distribution of daily precipitation as

Sscore and RMSD, and thus the reduction in mean ab-

solute bias from the elevation adjustment is dominant.

Figure 9 explores the relationship between the abso-

lute bias correction applied, or BCCA-IA absolute bias

minus BCCA absolute bias, the original absolute bias of

BCCA, and the change in elevation between the 3000

BCCA-IA and 1/88 BCCA. Across maximum surface

temperature, minimum surface temperature, and pre-

cipitation a consistent pattern emerges. As the initial

bias in BCCA increases, the ability of topographic

downscaling to reduce that bias also increases. For ab-

solute biases above approximately 18C for maximum

and minimum surface temperatures, and 0.25mmday21

for precipitation, topographic downscaling starts con-

sistently adding value. Figure 9, along with Figs. 6–8,

shows that either a large bias in BCCA or an increasing

elevation delta can result in the topographic downscal-

ing value added. When stations have both a large initial

bias in the correct direction (i.e., counter to the adjust-

ment) and a difference in elevation between BCCA-IA

and BCCA that is greater than 200m, topographic

downscaling often results in a substantial reduction of

TABLE 1. Max surface temperature mean absolute bias, Sscore,

and RMSD averaged across all 98 stations in the domain for

BCCA, BCCA-I, and BCCA-IA 1970–99.

BCCA Interpolation

Interpolation and

adjustment

Mean bias (8C)
IPSL-CM5A-LR 0.611 0.587 0.511

NorESM1-M 0.588 0.580 0.400

ACCESS1.0 0.573 0.554 0.435

Sscore
IPSL-CM5A-LR 0.863 0.863 0.866

NorESM1-M 0.860 0.860 0.864

ACCESS1.0 0.861 0.861 0.865

RMSD (8C)
IPSL-CM5A-LR 0.804 0.790 0.702

NorESM1-M 0.801 0.804 0.641

ACCESS1.0 0.806 0.802 0.685

TABLE 2. Min surface temperature mean absolute bias, Sscore,

and RMSD averaged across all 98 stations in the domain for

BCCA, BCCA-I, and BCCA-IA 1970–99.

BCCA Interpolation

Interpolation and

adjustment

Mean bias (8C)
IPSL-CM5A-LR 0.604 0.578 0.534

NorESM1-M 0.616 0.609 0.478

ACCESS1.0 0.591 0.573 0.490

Sscore
IPSL-CM5A-LR 0.859 0.859 0.861

NorESM1-M 0.858 0.858 0.861

ACCESS1.0 0.855 0.854 0.858

RMSD (8C)
IPSL-CM5A-LR 0.871 0.863 0.805

NorESM1-M 0.855 0.868 0.751

ACCESS1.0 0.990 0.994 0.916

TABLE 3. Precipitation mean absolute bias, Sscore, and RMSD

averaged across all 98 stations in the domain for BCCA, BCCA-I,

and BCCA-IA 1970–99.

BCCA Interpolation

Interpolation and

adjustment

Mean bias (mmday21)

MPI-ESM-LR 0.189 0.184 0.166

NorESM1-M 0.183 0.181 0.155

GFDL CM3 0.216 0.208 0.200

Sscore
MPI-ESM-LR 0.833 0.826 0.828

NorESM1-M 0.831 0.825 0.827

GFDL CM3 0.829 0.822 0.824

RMSD (mmday21)

MPI-ESM-LR 2.007 2.104 2.137

NorESM1-M 2.022 2.119 2.149

GFDL CM3 2.140 2.237 2.270
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absolute bias. For stations with low bias at low eleva-

tions, the change in absolute bias is generally small and

can be either positive or negative.

4. Conclusions

In this manuscript, we develop a methodology for

topographically downscaling intermediately downscaled

data (1/88) to 3000. We apply this methodology over the

mountainous Northeast to explore the added value of

topographic downscaling. We find that topographic

downscaling has benefits in some situations (defined by

variables and elevations). BCCA absolute bias is noisy

at low elevations, with BCCA as likely to underpredict

or overpredict surface temperature or precipitation with

no clear relationship to topography. Thus, noise domi-

nates any elevation adjustment. For example, the ele-

vation difference between the 3000 and 1/88 DEM at the

Burlington station, 20m, is as likely to exacerbate the

bias in the BCCAproduct as it is to ameliorate it, though

regardless of direction, the change will be small. As the

elevation difference increases, however, the topo-

graphic downscaling adjustment begins to dominate this

noise and is likely to add value. For example, Mt.

Mansfield elevation adjustments are large, and the im-

provements from topographic downscaling to BCCA

maximum and minimum surface temperature are clear.

Therefore, we find that the utility of topographic

downscaling depends on two quantities: the magnitude

and direction of the BCCA bias—specifically, a rela-

tively large bias that is consistent with the coarse

topography of BCCA—and the elevation difference—

specifically, a large enough difference in elevation

between 3000 and 1/88 DEMs to apply a substantial cor-

rection. We find relatively large biases consistent with

coarse topography and elevation differences most often

at elevations above 500m. Averaged across the domain,

topographic downscaling reduces the absolute bias for

maximum surface temperature, minimum surface tem-

perature, and precipitation. This overall value added

shows that the signal dominates the noise in aggregate

for our domain. We expect that in areas with greater

topographic relief the value of this methodology will be

more pronounced.

We have attempted to develop a downscaling method

that addresses the rich spatial variation of the region and

yet is also generalizable, leveraging only empirical re-

lationships between topography and surface tempera-

ture and precipitation. We note that our study uses

BCCA, which is based on climate analogs. Alternate

methods of downscaling could lead to different behavior

at high resolutions. Further, we note that our empirical

relationships are based on historical data; thus, care

must be taken when applying this downscaling meth-

odology to future climate. For example, expected

changes in the capacity of the atmosphere to hold

moisture could alter both surface temperature and

precipitation elevation adjustments. Also, we note that

results were not tested for sensitivity to interpolation

method, which contributes to the net effect of topo-

graphic downscaling, especially at low elevations.

Future work will explore how land–atmosphere in-

teractions within Lake Champlain basin could inform

FIG. 9. Mean absolute bias removed (negative bias difference) or

added (positive bias difference) by topographic downscaling com-

pared to the original BCCA bias: (a) max surface temperature,

(b) min surface temperature, and (c) precipitation for all stations in

the domain 1970–99. The change in elevation between the 3000 BCCA-

IA and 1/88 BCCA grid cell is denoted by the size of the point.
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high-resolution downscaling and alternate methods of

further bias correction. Examples include precipitation

distributions associated with mountain aspect and

dominant winds and an additional layer of bias correc-

tion based on station data. Finally, as this dataset is

specifically developed for climate impacts applications,

testing whether topographic downscaling or alternate

methods of downscaling add value to climate impacts

assessments is vital to the motivation of this research.
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