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ABSTRACT

Wildfires are often governed by rapid changes in seasonal rainfall. Therefore, measuring seasonal rainfall

on a temporally finescale should facilitate the prediction of wildfire regimes. To explore this hypothesis, daily

rainfall data over a 58-yr period (1950–2007) in south-central Florida were transformed into cumulative

rainfall anomalies (CRAs). This transformation allowed precise estimation of onset dates and durations of the

dry and wet seasons, as well as a number of other variables characterizing seasonal rainfall. These variables

were compared with parameters that describe ENSO and a wildfire regime in the region (at the Avon Park Air

Force Range). Onset dates and durations were found to be highly variable among years, with standard de-

viations ranging from 27 to 41 days. Rainfall during the two seasons was distinctive, with the dry season having

half as much as the wet season despite being nearly 2 times as long. The precise quantification of seasonal

rainfall led to strong statistical models describing linkages between climate and wildfires: a multiple-regression

technique relating the area burned with the seasonal rainfall characteristics had an R2
adj of 0.61, and a similar

analysis examining the number of wildfires had an R2
adj of 0.56. Moreover, the CRA approach was effective in

outlining how seasonal rainfall was associated with ENSO, particularly during the strongest and most unusual

events (e.g., El Niño of 1997/98). Overall, the results presented here show that using CRAs helped to define

the linkages among seasonality, ENSO, and wildfires in south-central Florida, and they suggest that this

approach can be used in other fire-prone ecosystems.

1. Introduction

Fire is a pivotal disturbance process influencing eco-

systems over much of the world’s terrestrial surface

(Chapin et al. 2002). How fire does this is fundamentally

linked to climate cycles. For example, in seasonal envi-

ronments large natural wildfires occur during the tran-

sitions between the dry and wet seasons, with the former

desiccating and connecting fuels, and the latter producing

lightning ignitions (Johnson 1992; Chu et al. 2002; Beckage

et al. 2003; Riaño et al. 2007a; Slocum et al. 2007).

Superimposed on these seasonal cycles are cycles of longer

periodicity generated by climatic teleconnections. One of

the most important teleconnections for fire is El Niño–

Southern Oscillation (ENSO), whose effects on wildfires

are conveyed by accentuating or diminishing the effects of

seasonal climate (Williams and Karoly 1999; Chu et al.

2002; Le Page et al. 2008). In south Florida, for example,

the cool La Niña phase of ENSO intensifies drought dur-

ing the dry season, resulting in greater fuel connectivity

and wildfire activity (Brenner 1991; Beckage et al. 2003).

Thus, the current understanding of fire–climate relation-

ships suggests that models that address both interannual

and seasonal cycles will be more useful than models that

address just one type of cycle.

To create such models, it is important for fire ecolo-

gists to use the most recent advances of climatologists.
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Such an approach has been conducted with a high degree

of success for interannual cycles. For instance, in many

regions it has been found that wildfires occur with a semi-

regular periodicity that corresponds with cycles of ENSO

(e.g., Beckage et al. 2003). This understanding of the

coupling of ENSO–wildfire cycles has been made possible

by the development by climatologists and mathematicians

of sophisticated models that address the formidable non-

linear dynamics involved [e.g., advances in spectral anal-

ysis; Ghil et al. (2002)]. This understanding has also

depended on the collection of accurate and well-tested

datasets describing ENSO (Philander 2004). Similarly,

the in-depth study of ENSO has spurred the discovery

of other teleconnections, and these have been used to

predict wildfires in a wide variety of regions [e.g., the

Pacific decadal oscillation in Alaska, the Arctic Oscilla-

tion in Siberia, and the Indian Ocean dipole in the tropics;

see sources in Riaño et al. (2007b) and Le Page et al.

(2008)]. Other investigations have shown that tele-

connections can interact to influence wildfire regimes

(Kitzberger et al. 2007).

In parallel with these advances involving interannual

cycles, climatologists have also made notable advances

with the modeling of seasonal cycles. These models use

a broad range of climate parameters (e.g., rainfall, shifts in

the intertropical convergence zone) and high-resolution

temporal data to estimate when seasons start, end, and

peak, as well as their duration (Camberlin and Diop 2003;

Stewart et al. 2005; Slocum et al. 2007; also see sources in

Lima and Lall 2009). Further, some studies have exam-

ined how seasonal onset dates are associated with tele-

connections (e.g., Lima and Lall 2009). Because all of

these recent efforts have estimated precise timing of shifts

in seasonal climate, they may be useful for improving

models that examine wildfires. However, these advances

in understanding seasonal cycles have rarely been incor-

porated into studies of fire ecology [but see Westerling

et al. (2006) for a notable exception].

In this manuscript we present a case study in which we

relate the results of a high-resolution seasonal analysis

to descriptors of a wildfire regime. Our study took place

at the Avon Park Air Force Range (APAFR) in south-

central Florida, a region that has dry and wet seasons

that are generally, but not always, well defined in terms

of rainfall (Chen and Gerber 1990). Lack of rainfall

during the dry season produces well-connected fuels and

allows for landscape-level wildfires, especially during

droughts induced by La Niña (Beckage et al. 2003).

Understanding how ENSO relates to patterns in rainfall

is essential, therefore, for prediction of fires in this re-

gion. The approach we selected to investigate this sys-

tem was developed by Camberlin and Diop (2003), and

uses cumulative rainfall anomalies (CRAs) to delimit

seasonal onset dates and durations. We asked the fol-

lowing questions:

1) How variable are seasonal onset dates and durations

at the study site? How distinct are the wet and dry

seasons in terms of characteristics of rainfall?

2) How does ENSO influence seasonal rainfall? Does

ENSO appear to be associated with the durations of

the dry and wet seasons and their onset dates? Do

these associations appear to affect rainfall amounts

or other seasonal rainfall characteristics?

3) Does the precise estimation of the durations of seasons

and rainfall facilitate the development of statistical

models describing wildfire activity at the APAFR?

4) How does the CRA approach compare to that of

a more traditional approach that uses standardized

seasonal spans to understand wildfire regimes? Does

the CRA approach produce additional and valuable

insights into the relationships between seasonal cli-

mate, ENSO, and wildfires in the region?

This manuscript is organized as follows. In section 2, we

present our data and methods, including a description of

the APAFR, how rainfall data were converted to CRAs,

and how the resultant patterns in seasonal rainfall were

statistically related to ENSO and the APAFR’s wildfire

regime. In section 3 we present the results of these anal-

yses, and we interpret these results in section 4. We con-

clude the manuscript in section 5 with some assertions of

why accurate quantification of rainfall is important for

understanding the connections among seasonal climate,

ENSO, and wildfires.

2. Data and methods

a. Study site

The APAFR is a 42 000-ha military installation cov-

ering large parts of Polk and Highland counties in

south-central Florida (278359N, 818169W) (Fig. 1). The

installation, despite being generally low in elevation,

has subtle elevation gradients that demark distinct plant

communities of varying flammability and hydroperiod

(Orzell and Bridges 2006; Platt et al. 2006). Pine sa-

vannas and dry prairie occur at upper elevations and are

highly flammable communities with short hydroperiods.

At lower elevations lie wet prairie and marshes, which are

flooded for substantial parts of the year and are the least

flammable.

The installation was established in World War II for

the purpose of practicing bombing, strafing, and related

missions. It is still active, and given favorable weather

conditions, numerous wildfires are started by ordnance

as well as by lightning. Wildfires generally occur from
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January to August, but the largest fires occur during the

transition between the dry and wet seasons (Slocum

et al. 2007; APAFR fire records). The reason that large

fires occur at this time is because fuels tend to be very

dry and well connected during this period (Slocum et al.

2003, 2010; Beckage et al. 2005). Smaller ordnance fires

tend to occur earlier in the dry season (January–April),

while smaller lightning fires tend to occur later in the wet

season as this period has frequent lightning strikes but

moist and disconnected fuels (Duncan et al. 2010).

b. Seasonal characteristics of rainfall

Camberlin and Diop (2003) developed the CRA ap-

proach to identifying wet-season onset dates in Senegal,

where such information is useful for agriculture. The

approach converts rainfall data into a waveform, thereby

allowing investigators to easily visualize onset dates

and durations of seasons within any given year. Useful

parameters describing rainfall can then be estimated

accurately within each precisely defined season. We

tailored Camberlin and Diop’s (2003) approach so that

it delimited the spans of the dry season, something of

obvious importance for describing linkages with ENSO

and wildfires in southern Florida (Beckage et al. 2003;

Slocum et al. 2007). The specific steps we took were as

follow:

1) We collected daily rainfall data over 58 yr (1950–

2007) from five rainfall stations within 60 km of the

APAFR (Fig. 1). Five stations were used, rather than

one, to address the spatial variation in the precipita-

tion. Pearson correlations among the stations over the

period of study varied from 0.35 to 0.60. These cor-

relations were weakest during summer–wet-season

months, when convective thunderstorms resulted in

rainfall at some stations but not others. The stations

were all part of the cooperative network operated by

the National Oceanic and Atmospheric Admission.

Data were obtained from the National Climatic Data

Center (information online at http://cdo.ncdc.noaa.

gov/CDO/dataproduct; station names were Avon

Park 2, Bartow, Desoto City, Mountain Lake, and

Wauchula).

2) The time series from these stations had ,1% missing

data. Missing data were filled in by the following

process: (a) for a given station, missing values on days

when all other stations had no rain were assigned a 0,

and (b) if other stations had rain, we gave the station

an estimate of the rainfall derived from multiple im-

putation [MI procedure, SAS release 9.1, SAS Inc.,

Cary, North Carolina; Rubin (1996)].

3) For each day of rainfall, we took the natural-log

transformation of the mean of the five stations. This

transformation emphasized the influence of frequent

and smaller amounts of rainfall in data interpretation

and decreased the influence of infrequent, large rain-

storms (Camberlin and Diop 2003). This emphasis on

steady rainfall is important because such rainfall is

more likely to influence wildfires in the region than

large rainstorms, as soils have limited ability to absorb

rain, and excess water from large storms results in

surface runoff (Albertson et al. 2009). The transfor-

mation did not deemphasize large storms to the extent

that the patterns they generated became difficult to

identify.

4) We took the mean of the log-transformed daily rain-

fall over the entire time series. We then subtracted this

value from each record, producing rainfall anomalies.

Next, we added these anomalies consecutively, start-

ing with the first day of the time series, producing daily

values of CRAs.

5) Using CRAs, changes in rainfall and the onset dates

of the seasons could be readily visualized, as depicted

in Fig. 2a. In any given year the dry season was char-

acterized by a consistent decrease in CRAs, the result

of consecutively adding negative rainfall anomalies.

Conversely, the wet season was characterized by a

consistent increase in CRAs, the result of adding pos-

itive anomalies. Where these upward and downward

trends met within a given year was at the CRA mini-

mum for that year, and this minimum was used to de-

fine the onset of the wet season (as per Camberlin and

Diop 2003) This method produced reliable estimates

FIG. 1. Location of the Avon Park Air Force Range in south-

central Florida in relationship to five rainfall stations (labeled with

white filled circles) and major highways. The star in the insert

shows the location of the installation within the state of Florida.
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for most years, as most years had a unimodal rainfall

pattern (e.g., Fig. 2a). Some years, however, were

bimodal and therefore had two CRA minima. For

each of these years we selected the second minimum

to denote the onset, as this minimum occurred im-

mediately before the upward trend denoting the wet

season. This second minimum also more closely cor-

responded with the timing of the minima found in

unimodal years.

6) The onset date of the dry season was estimated where

the upward trend of the wet season met the downward

trend of the dry season (i.e., at annual CRA maxima).

There were no problematic values for any year in the

time series for estimating this variable.

7) We used onset dates to define ‘‘fire years,’’ periods

spanning from the start of the dry season of one cal-

endar year until the end of the wet season of the next

calendar year. Fire years thus incorporated full fire

seasons, which generally extended from January to

August at the study site. This incorporation of fire

seasons within fire years resulted in a straightforward

interpretation of patterns (cf. Beckage et al. 2003).

8) Once seasonal spans were defined, we derived four

additional characteristics describing rainfall during

each season. Two of these characteristics were season

duration and total rainfall (Fig. 2b). The third charac-

teristic was rainfall accumulation rate (DCRA day21),

which was obtained using the slope (parameter esti-

mate) obtained from a linear regression using day of

the fire year as the independent variable and CRA as

the dependent variable (Fig. 2b). The fourth char-

acteristic was ‘‘trend consistency,’’ which described

how consistent the drying and moistening trends

were during the dry and wet seasons, respectively.

Trend consistency was estimated using the R2 scores

from the regressions used to estimate rainfall accu-

mulation rates. For example, if the downward trend

in CRAs during the dry season was smooth, then

that dry season had a high R2 score, but if the season

was interrupted by periodic rainfall, its score fell.

Likewise, during the wet season, trend consistency

was high when there was a smooth upward trajec-

tory of CRAs but fell if the trend was interrupted by

‘‘dry spells.’’

The characterization of seasonality based on the

CRA approach was compared to that of a commonly

used approach that uses standardized monthly spans. We

call this latter technique the monthly approach. In this

method the spans of the two seasons are estimated using

mean monthly rainfall. These means were calculated by

first summing the daily rainfall for each month of each

year, and then by taking the mean of these sums for each

month over the 58 yr of the time series. The seasons

were then defined based on which months clearly had

more or less average rainfall; for example, if August and

September were found to have half the average rainfall

as the rest of the months, then these months were as-

signed to the dry season and the rest of the months to the

wet season. The resultant seasons were standardized in

the sense that they had fixed durations for every year, as

well as onset dates that were fixed to occur on the first

day of the first month of each season. The total rainfall

for each season of each year was calculated by summing

the daily rainfall over the standardized spans.

FIG. 2. Examples of CRAs (black jagged lines). (a) CRAs for

1994 and 1995. Upward arrows indicate onset dates of the wet

season and downward arrows indicate onset dates of the dry

season. (b) Seasonal characteristics of the fire year of 1995, with

the fire year being defined as lasting from the beginning of the dry

season of 1994 (arrow 1) to the end of the wet season of 1995

(arrow 2). Onset date of the wet season is estimated as the min-

imum CRA within the fire year (arrow 3). Onset dates defined

seasonal spans and allowed other parameters describing season-

ality to be estimated within them. These included rainfall accu-

mulation rates (DCRA day21; black segments 4 and 5, estimated

using linear regression), durations (in days; black segments 6 and

7), and total rainfall (DCRA; black segments 8 and 9). The R2

scores from regressions were used to estimate the consistency of

the drying trend in the dry season and of the moistening trend in

the wet season.
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c. Relationships between ENSO and seasonal
characteristics

ENSO was described using the Niño-3.4 index. This

index has been used in several studies describing climate

in the region (Enfield et al. 2001; Schmidt et al. 2001), and

we chose it over other ENSO indices because we found it

to be more predictive of rainfall. The index is derived

from anomalies in sea surface temperatures in the equa-

torial Pacific Ocean at 58N–58S and 1208–1708W. Monthly

values from January 1950 to December 2007 were ob-

tained from the National Oceanic and Atmospheric

Administration’s (NOAA) Climate Prediction Center

(information online at http:\\www.cpc.ncep.noaa.gov\

data\indices). ENSO was described by taking the mean

of the Niño-3.4 values over the CRA-defined spans of

each season. Because these spans started and ended

within months, we adjusted the calculations so that in-

complete months were proportionately weighted. For

example, if a dry season was found to span from 1 March

to 12 June, then the Niño-3.4 values of March, April, and

May would be fully weighted in the calculation, but only

12/30th of the value for June would be used (i.e., 12 out of

the 30 days in June).

We used linear regressions to compare ENSO with

seasonal rainfall characteristics. For these regressions

the normality of the residuals was examined using box

and scatterplots, and when necessary transformations

were applied to improve the normality and to linearize

the models. In some cases data distributions were highly

negatively skewed, so we first reflected the distribution

before applying a transformation (Howell 1987). We

paid close attention to outliers in the distributions, as

they proved to be important for understanding the role

of ENSO. All regressions were done using the REG

procedure of SAS release 9.1.

The results revealed using regressions were further de-

scribed using graphs of CRAs during fire years undergoing

different ENSO phases. We assessed which seasons were

undergoing particular phases based on the criteria of

NOAA’s Climate Prediction Center (information online

at http://www.cpc.noaa.gov/products/analysis_monitoring/

ensostuff/ensoyears.shtml). This criterion uses the oceanic

Niño index (ONI), which is the 3-month running mean of

Niño-3.4. El Niño events are indicated when there are five

consecutive months with ONI values $0.58C, and La Niña

events are indicated when there are five consecutive

months with values #20.58C. All other periods are con-

sidered ENSO neutral. See Kousky and Higgins (2007) for

more detail.

We compared the results of the CRA approach with

those of the ‘‘monthly approach.’’ For this latter ap-

proach, ENSO during the dry season was estimated using

the mean of the monthly Niño-3.4 values over December–

February. This technique is a standard way of estimating

the intensity of ENSO, as anomalies in sea surface tem-

peratures generally reach their highest levels in the

equatorial Pacific during these months (Swetnam and

Betancourt 1990). ENSO during the wet season was

estimated using the mean of Niño-3.4 over the months

determined to constitute the wet season. Estimates of

ENSO were compared to rainfall amounts using linear

regression.

d. Relationships between seasonal characteristics
and wildfires

We described the wildfire regime at the study site by

summing the number of wildfires and the total area

burned for each fire year. Data were obtained by using the

APAFR’s fire records (1978–2007). To examine how the

number of fires and the area burned related to climate, we

conducted multiple regressions using an information-

theoretic approach (Burnham and Anderson 2002). This

approach is especially appropriate for observational

studies where it is not feasible to control explanatory

variables. In this approach, numerous models are pro-

duced that describe the associations between wildfire

activity and seasonal rainfall. For each model statistics

are produced describing ‘‘model uncertainty,’’ that is, the

likelihood that the model is the most predictive of the set

of models tested. Uncertainty in parameter estimates is

also addressed by examining how they vary over the

models; this is done using a procedure called model av-

eraging. Model averaging results in parameter estimates

with improved precision and reduced bias when com-

pared to estimates produced by approaches where a sin-

gle ‘‘best’’ model is produced (e.g., stepwise regression)

(Anderson et al. 2000). Our goal was to build predictive,

hypothesis-generating models for the wildfire regime at

the APAFR. The specific steps we took are as follow:

1) In exploratory analyses we found that wildfire activity

during a given fire year was mostly associated with two

seasons: the dry season within the current fire year and

the wet season preceding the fire year. We therefore

constructed models using seasonal rainfall charac-

teristics of these two seasons, yielding a total of eight

independent variables (rainfall, trend consistency, onset

date, and duration of both the current dry season and

previous wet season).

2) We used multiple regression to examine how these

eight variables were related to the area burned and the

number of wildfires. We limited the number of sea-

sonal characteristics included in any one model to four,

producing a total of 165 models for each dependent

variable. For the sake of parsimony we did not include
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several variables in these models. One variable not

included was rainfall accumulation rate, as this variable

is essentially a transform of season duration and total

rainfall. We also did not include variables describing

ENSO, as ENSO is a higher-order phenomenon whose

contribution to the variation of the wildfire parameters

was already adequately ‘‘represented’’ by rainfall var-

iables or combinations of rainfall variables. (Such re-

lationships would be more adequately modeled using

a structural equation model, which is beyond the scope

of this study.)

3) For each model produced, we determined its second-

order Akaike information criterion (AICc), which is

designed for datasets with small sample sizes (Akaike

1973). We addressed the uncertainty in our model

selection by calculating Akaike weights (wi) for each

model. This statistic varies from 0 to 1 and represents

the chance for a given model to be the ‘‘best approx-

imating model’’ among the 165 models tested.

4) We used model averaging to address uncertainty in

parameter estimates. In this technique, each parame-

ter estimate of each model is multiplied by the Akaike

weight of that model. These weighted parameter es-

timates are then summed over all models to produce

model-averaged parameter estimates. Standard errors

and 95th confidence intervals around each model-

averaged estimate were also derived to provide esti-

mates of effect size [i.e., the strength, precision, and

potential significance of an independent variable; see

formulas in Burnham and Anderson (2002)].

5) We also determined the ‘‘relative importance’’ [w1( j)]

of each seasonal characteristic, that is, the importance

of a given characteristic relative to the other charac-

teristics included in the full set of models. Relative

importance was calculated as the sum of the Akaike

weights over all the models in which the characteristic

occurred.

6) A characteristic of seasonal rainfall was considered to

be important when it had a high relative importance

value and a 95th confidence interval that did not in-

clude 0 (Burnham and Anderson 2002). Once we de-

termined which variables were important, we further

examined them by adding them together into a multiple-

regression model. We report the adjusted R2 scores of

these models.

7) We compared these R2 scores to the scores produced

by the monthly approach. This latter set of scores was

derived from linear regressions comparing the area

burned and the number of wildfires to rainfall amounts

of the current dry season and previous wet season (as

estimated within standardized seasonal spans).

8) For some analyses it was important to address results

that were generated by strong leverage points–outliers

associated with ENSO. In these cases it was some-

times necessary to remove the associated fire years to

demonstrate trends. We explain these special cases in

detail.

3 Results

a. Seasonal characteristics of rainfall

The CRA approach described the average wet season as

lasting from 21 May to 1 October (a duration of 134 days),

and the average dry season as lasting from 2 October to

20 May (a duration of 230 days) (Table 1). The average fire

year therefore lasted from 2 October of one year to 1

October of the next year. The variation in the onset dates

and seasonal durations was considerable, with onset dates

having standard deviations of almost a month and sea-

sonal durations having standard deviations of more than

a month (Table 1). Moreover, the influence of statistical

outliers related to ENSO was important. For example, one

fire year (1997) was associated with an El Niño episode

that is sometimes referred to as the ‘‘Super El Niño’’

(Philander 2004). When we removed this fire year from

the time series, the standard deviation of the dry-season

onset date dropped from 27 to 14 days (Table 1).

We estimated rainfall within these precisely delimited

seasons. Average rainfall during the dry season was esti-

mated to be about half that during the wet season (Table

1). Over successive years there were sharp differences in

dry-season and wet-season rainfall, with some years being

particularly striking (e.g., during the Super El Niño) (Fig.

3a). There were just a few years when the rainfall dur-

ing the two seasons was found to be similar (e.g., 1973).

Rainfall accumulation rates were less pronounced for the

dry season than the wet season, indicating that desiccation

during the dry season was more gradual than moistening

during the wet season. These trends of desiccation and of

moistening were highly consistent, as indicated with trend

consistency estimates (R2 scores) that were .0.90 for both

seasons (Table 1). The drying trend, however, tended by

be more readily interrupted by ‘‘wet spells’’ than the wet

season was interrupted by ‘‘dry spells’’; this result was

shown by a higher standard deviation for dry-season trend

consistency than the standard deviation for wet-season

trend consistency (Table 1). Many of the dry seasons that

had wet spells were undergoing strong ENSO episodes

that were associated with statistical outliers (Table 1).

These outliers are explained in more detail in section 3b.

We contrasted this description of seasonal rainfall

produced by the CRA approach with one produced by

the monthly approach (i.e., an approach that is based on

standardized monthly spans). To determine these stan-

dardized spans, we took the average rainfall per month
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over the time series. Rainfall was found to average

.17 cm for 4 months (June–September) and to aver-

age ,10 cm for the remaining 8 months. The approach

therefore designated the wet season as lasting from 1 June

to 30 September, a duration of 122 days, and the dry

season as lasting from 1 October to 30 May, a duration

of 243 days (Table 1).

When we compared these seasonal spans to the aver-

age spans estimated by the CRA approach, we did not

find much difference. The monthly approach’s estimate

of the average onset date of the dry season was 1 day

earlier (1 versus 2 October) and its estimate of the aver-

age onset date of the wet season was 11 days later (1 June

versus 21 May; Table 1). These differences translated into

a wet season that was 12 days shorter and a dry season

that was 12 days longer (on average) when compared to

the CRA approach’s estimates.

While these differences were small, the considerable

variation in onset dates and durations indicated by the

CRA approach meant that the two approaches assigned

many days to different seasons. When we examined this

‘‘difference in assignment’’ directly, we found that it av-

eraged 33 6 35 days [61 standard deviation (SD)] per fire

year, and ranged from 0 days in 1967 and 1986 to 222 days

during the Super El Niño (1997). These differences in

assignment resulted in the monthly approach not accen-

tuating the contrast between wet and dry seasons as much

as the CRA approach. The monthly approach described

the dry season as having, on average, 74% of the rainfall

as the wet season; this number, however, was only 47%

TABLE 1. Means and standard deviations (SD) of five parameters describing dry-season and wet-season rainfall. Fire years falling outside

of normal distributions (outliers) are also indicated, and estimates without these fire years are shown in parentheses.

Seasonal characteristics

Dry season Wet season

Mean SD Outliers Mean SD Outliers

Onset date (day of year) 275* (272) 27 (14) 97 141* (144) 24 (18) 57, 59

Duration (days) 230 (232) 35 (30) 98 134 (131) 41 (30) 97

Total rainfall (cm) 42 15 89 (88) 27 (22) 97

Accumulation rate (DCRA day21) 20.10 0.04 0.18 0.05

Trend consistency (R2)** 0.91 (0.94) 0.16 (0.08) 58, 83 0.93 0.06

* Day of year 275 5 2 Oct and day 141 5 21 May.

** The R2 score of a linear regression using day of fire year to predict CRAs for each season.

FIG. 3. Seasonal rainfall estimated using the (a) CRA and (b) the monthly approaches. Dry-

season rainfall (solid filled circles) was usually, but not always, indicated with dips in rainfall,

while wet-season rainfall (exes) was usually indicated with peaks. Arrows point to seasons that

the CRA approach described as having unusual durations that coincided with strong El Niño

events.
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when using the CRA approach (Table 1). Also, compared

to the CRA approach the monthly approach described

many dry seasons as having just as much rainfall, or even

more rainfall, as the wet season; the most prominent

examples of this occurred during the fire years 1957,

1997, and 1998 (Fig. 3b). Rainfall during these unusual

fire years turned out to have important relationships

with ENSO; this relationship is covered in the next

subsection.

b. Relationships between ENSO and seasonal rainfall

ENSO had a strong influence on rainfall during the

dry season. As the Niño-3.4 index increased, the rain-

fall amount and accumulation rates increased, and the

consistency of rainfall decreased (Table 2). This finding

meant that more moisture arrived in the dry season during

El Niño events and drier conditions were produced during

La Niña events. More information about this result was

obtained by examining graphs of CRAs during different

ENSO phases. These graphs revealed that dry seasons

undergoing El Niño conditions had peaks of rainfall that

interrupted the drying trend, thereby increasing the total

rainfall and lowering the trend consistency (e.g., 1987;

Fig. 4). During stronger El Niño episodes, these peaks

blended together to create an additional ‘‘hump’’ of

rainfall in the middle of the dry season, thereby producing

a bimodal rainfall pattern (e.g., 1983; Fig. 4). These bi-

modal fire years explained a number of the statistical

outliers detailed in Table 1 (1958, 1959, and 1983), and

they contrasted markedly with the unimodal pattern

typical of ENSO neutral years, during which peaks in

CRAs were reduced in number and strength (e.g., 1990;

Fig. 4). When the dry season was undergoing La Niña

conditions, rainfall was much reduced, resulting in steeply

falling CRAs and a further reduction in the number and

strength of the peaks in rainfall (e.g., 1989; Fig. 4).

In contrast with the dry season, ENSO was not strongly

associated with characteristics of the wet season (Table 2).

There was a slight indication that El Niño conditions

produced a greater tendency for the wet season to have

inconsistent rainfall (Table 2).

We also examined the relationships between ENSO

and seasonal onset dates and durations. In examining

these relationships we reasoned that if ENSO was asso-

ciated with the duration of a season, then the upcoming

season would have a correspondingly longer or shorter

season to compensate, along with a shift in its onset date.

No statistically significant relationships emerged that

suggested that ENSO produced these effects (Table 2). In

performing these analyses, however, we found that there

did appear to be important relationships between ENSO

and the onset dates and durations during the fire years

already mentioned as being unusual (1958, 1997, and

1998). These effects appeared to be generated when

strong El Niño conditions produced heavy rainfall during

the dry season in such a way that it blended in with rainfall

of the prior or subsequent wet season. For example, in

1957 heavy rainfall arrived during a strong El Niño in

April–May, and this rainfall blended in with rainfall ar-

riving in June–October (Fig. 4). The CRA approach

therefore generated an early onset date of the wet season

for this fire year, as well as a shortened dry season (see

outliers in Table 1). A second, more important, example

involved the Super El Niño of 1997/98. Starting in the wet

season of 1997, this event resulted in heavy rainfall that

did not end in October as in typical years, but instead

persisted until March of the next year (Fig. 4). This event

therefore produced the longest and moistest wet season

during the period of record (Table 1; Fig. 3a). It also

‘‘squeezed’’ the ensuing dry season (of 1998) such that it

was the shortest on record (lasting 102 days compared to

a mean of 230 days; see Table 1 and Fig. 4).

We compared these statistical relationships between

ENSO and seasonal rainfall, as generated by the CRA

approach, with the relationships revealed when a more

traditional monthly approach was used. For the dry

season, this approach described ENSO using the aver-

age of the Niño-3.4 index over December–February. We

found that these averaged values were positively related

to dry-season rainfall (R2 5 0.36). For the wet season we

estimated ENSO using the mean of the Niño-3.4 values

over the months of June–September. These averages

were not found to be associated with wet-season rainfall

(R2 5 0.03). Overall these R2 scores were similar to those

produced by the CRA approach (Table 2), and thus the

monthly approach described similar associations between

ENSO and seasonal rainfall amounts.

However, when we examined how the monthly ap-

proach described rainfall patterns during the unusual

TABLE 2. Results of linear regression comparing the intensity of

ENSO during the dry and wet seasons with rainfall characteristics

of those seasons. Shown are R2 scores and p values. Signs of the R2

scores indicate positive and negative associations. Here, ln in-

dicates data normalized using a natural-log transformation, N.S.

indicates not significant, r indicates data normalized by being re-

flected and then natural-log transformed (see text, section 2c),

s indicates data normalized using a square root transformation, and

^2 indicates data squared to adjust for negative skew.

Seasonal characteristics

Dry season Wet season

R2 p value R2 p value

Total rainfall 10.42 #0.0001 10.10 (ln) #0.05

Accumulation rate 10.54 #0.0001 20.01 N.S.

Trend consistency 20.51 (r) #0.0001 20.20 (r) #0.001

Onset date 20.00 N.S. 20.02 (s) N.S.

Duration 10.02 (^2) N.S. 10.07 (ln) N.S.
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fire years, we found that it revealed patterns that were the

opposite of those revealed by the CRA approach. For

example, the monthly approach described the dry season

of 1998 as having intense El Niño conditions, with a sea

surface temperature anomaly in the Niño-3.4 region of

2.018C, the second highest value over the period of study.

These conditions corresponded with record levels of

rainfall over the standardized dry season (October 1997–

May 1998) (Fig. 3b). The CRA approach, on the other

hand, estimated the dry season of 1998 as spanning

a much different period, from the end of March 1998 to

the end of June 1998. ENSO during this period was in

a neutral phase (0.418C) and rainfall was very low (Fig.

3a). Similar opposing patterns between the monthly and

CRA approaches were found for 1957 (cf. Figs. 3a and

3b). It was therefore clear that it was during the more

unusual episodes of ENSO that the two approaches dif-

fered in how they described rainfall.

c. Associations between seasonal rainfall
and the wildfire regime

We described the wildfire regime at the APAFR by

summing the area burned and the number of wildfires

within fire years. This description of the wildfire regime

FIG. 4. Cumulative rainfall anomalies

(black lines) during selected fire years.

Onset dates of the wet season are shown

with arrows.
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was then statistically compared to the CRA approach’s

characterization of seasonal rainfall using multiple re-

gression and an information-theoretic approach. For the

area burned, this analysis found that three seasonal

rainfall characteristics—dry-season rainfall, dry-season

duration, and consistency of rainfall in the previous wet

season—had high relative importance values and strong

effect sizes [i.e., w1( j) values $0.73 and 95th confidence

intervals that did not include 0; see top section of Table 3].

The analysis therefore suggested that more area burned

when the dry season was longer and had less rainfall,

as well as when rainfall during the previous wet season

was inconsistent. The other seasonal rainfall charac-

teristics did not appear important, having relative im-

portance values #0.19 and confidence intervals that

included 0 (top half of Table 3). The area burned, there-

fore, did not appear to be associated with the consistency

of the drying trend, or to when the seasons started and

ended, or with how much rainfall arrived during the pre-

vious wet season.

Based on this information, we examined the results of

a multiple regression examining how the area burned

was associated with the three seasonal characteristics

designated as important. This model explained a large

proportion of the total variance in the data (R2
adj 5 0.61).

The bulk of the explained variance was attributed to

dry-season rainfall (partial R2
adj 5 0.41; see Fig. 5a),

and smaller proportions were attributed to the con-

sistency of moistening in the previous wet season

(partial R2
adj 5 0.12) and dry-season duration (partial

R2
adj 5 0.07).

In examining the number of wildfires, we found that

four seasonal rainfall characteristics were important.

These included three characteristics of the previous wet

season (rainfall consistency, onset date, and duration)

and one characteristic of the dry season (rainfall amount)

[w1( j) values $0.56 and 95th confidence intervals that

did not include 0; see bottom section of Table 3]. This

result indicated that more wildfires occurred after wet

seasons that were shorter, started earlier in the year, and

had inconsistent rainfall, and when the dry season had

less rainfall. The other four seasonal characteristics

were not found to be important (relative importance

values ,0.27; see bottom half of Table 3). When we in-

cluded the four important seasonal characteristics in a

multiple-regression model, we found that the model ex-

plained about half the variation in the data (R2
adj 5 0.56).

The consistency of rainfall during the previous wet season

accounted for about half of this explained variation (partial

R2
adj 5 0.24). The other three seasonal characteristics

collectively accounted for the other half (onset of the

previous wet season, partial R2
adj 5 0.09; previous wet-

season duration, partial R2
adj 5 0.13; dry-season rainfall,

partial R2
adj 5 0.09).

TABLE 3. Results of model averaging of multiple-regression analyses describing how the area burned (top section) and number of fires

(bottom section) were associated with seasonal rainfall characteristics. Seasonal characteristics found to be important are set in boldface.

Here, w1( j) 5 relative importance, bb j 5 the model-averaged parameter estimate, bse 5 the unconditional standard errors, CI 5 confidence

interval, pws 5 the wet season preceding the fire season, cds 5 dry season that occurs within the current fire season, s 5 data normalized

using a square root transformation, ln 5 data normalized using a natural-log transformation, ^2 5 data squared to adjust for negative

skew, and r 5 data reflected and then natural-log transformed to adjust for negative skew (see text, section 2c).

Seasonal characteristic ( j) w1(j) bb
j

bse 95% CI

Area burned (s)

Consistency (pws) (r) 0.98 212.7 3.8 25.3 220.2

Rainfall (cds) 0.96 20.91 0.24 20.43 21.39

Duration (cds) (^2) 0.73 0.0005 0.0002 0.0010 0.0001
Rainfall (pws) 0.19 10 12 34 214

Consistency (cds) (r) 0.17 0.31 5.5 11.0 210.4

Duration (pws) 0.15 2.5 18 38 233

Onset (pws) 0.14 20.0004 0.0005 0.0006 20.0014

Onset (cds) (ln) 0.10 2.4 54 108 2103

No. of wildfires (s)

Consistency (pws) (r) 0.98 21.02 0.27 20.49 21.55

Onset (pws) 0.98 21.6 3 1024 4.4 3 1025 27.4 3 1025 22.5 3 1024

Duration (pws) 0.74 23.2 1.1 21.0 25.3

Rainfall (cds) 0.57 20.033 0.015 20.003 20.063
Rainfall (pws) 0.26 22.23 0.96 0.34 24.11

Duration (cds) (^2) 0.11 21.8 3 1025 3.3 3 1025 4.6 3 1025 28.2 3 1025

Consistency (cds) (r) 0.07 20.05 0.29 0.53 20.62

Onset (cds) (ln) 0.05 0.21 4.01 8.07 27.65
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To demonstrate the effectiveness of the CRA ap-

proach in describing climate–wildfire relationships, we

compared its results to those generated by the monthly

approach. This latter approach found that less area

burned when the dry season and the previous wet sea-

son had more moisture (previous wet-season rainfall,

R2 5 0.14; dry-season rainfall, R2 5 0.22; see Fig. 5b).

The statistical comparison with dry-season rainfall,

however, was only predictive when the fire season as-

sociated with the Super El Niño was removed from the

dataset. For the number of fires, the monthly approach

found a slight negative effect of previous wet-season

rainfall (R2 5 0.15), and no effect for dry-season rainfall

(R2 5 0.003).

4. Discussion

a. Relationships between wildfires and
seasonal rainfall

The use of CRAs (Camberlin and Diop 2003) to de-

scribe seasonal rainfall resulted in improved under-

standing of how climate affected the wildfire regime of

our study site (APAFR) in south-central Florida. The

approach generated a number of variables that precisely

described the seasonality of rainfall, and when these

variables were incorporated into statistical models, they

accounted for roughly half of the variation in the data

describing the area burned and the number of wildfires.

This is a considerable proportion of the total ‘‘explained’’

variation considering the large number of other factors

that drive wildfires in the region (e.g., fuel loads, man-

agement effects, and differences in ignition sources).

Why did the CRA approach result in effective pre-

dictive models? Because the approach is specifically de-

signed to identify onset dates for each year of study, it

tended to accurately assign wetter days to the wet season

and drier days to the dry season. In south Florida this fine-

tuning of assignment of days to seasons is important be-

cause the timing of the largest wildfires is also fine-tuned,

being clustered around the onset of the wet season. For

example, a study examining the wildfires in the Everglades

( just south of the APAFR) found that 53% of the total

area burned by lightning fires was by fires starting within

a week of wet-season onset (Slocum et al. 2007). Fires

starting 7–21 days after onset burned an additional 36% of

the total area burned. Wildfires burn large areas during

this short time period for a number of reasons. First,

compared to the rest of year, this period is more likely to

have favorable fire weather, such as combinations of low

relative humidity and intense levels of solar radiation (M.

G. Slocum et al. 2010, unpublished data). This period is

also more likely to have available fuels, the result of cu-

mulative desiccation and the lowering of water levels over

the dry season (Slocum et al. 2003, 2007; Beckage et al.

2005). Finally, this period also has thunderstorms that

produce lightning ignitions. These thunderstorms, how-

ever, can also produce deluges that end favorable fire

conditions in just a matter of days, thereby severely con-

straining the ‘‘window of opportunity’’ for large wild-

fires. Because of the importance of the period around

onset, and the fact that the timing of this period varies

FIG. 5. Relationships between the area burned and the dry season rainfall when using the (a) CRA and (b) monthly

approaches. Data for individual fire years are shown as black filled circles, and predicted values produced by linear

regression are shown with black lines. The area burned during the fire season associated with the Super El Niño of

1997/98 is shown with a square symbol. In (b), the black dashed line shows predicted values when the Super El Niño is

included in the dataset. The R2 scores of the linear regressions are also reported, with the score of the dashed line

shown in parentheses.
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considerably from year to year, it is clearly important to

estimate the onset date precisely for each year of study

in the region.

A second reason for the effectiveness of the CRA ap-

proach was that it provided a full description of the sea-

sonal rainfall, including estimates of rainfall consistency,

onset dates, and durations. This full description proved to

be important for generating possible explanations for

why wildfire activity varied among years. For example,

more area burned when dry seasons were longer, prob-

ably because longer dry seasons provided more time for

ignitions to occur and for fuels to become dry and well

connected (Westerling et al. 2006; Gill and Allan 2008).

Similarly, we found that wildfire ignitions occurred less

frequently after wet seasons that had consistent rainfall,

were longer, and started later in the year. The reason for

this effect is unknown, but we suggest that it depends on

how dry and connected fuels were during military train-

ing missions. These missions tend to be conducted more

frequently in January and afterward (after holiday

break), and their ability to ignite fires may be reduced

after wet seasons that end with particularly moist fuel

conditions.

Our results are similar to other studies that examined

how wildfire regimes were related to seasonal spans. For

example, in a study in the northern Rocky Mountains,

Westerling et al. (2006) found that fire seasons tended to

be longer and have more large fires when snow melted

earlier in the year. Flannigan et al. (2009) assert that

accurate modeling of seasonal duration is important for

forecasting the effects of global warming.

We further tested the CRA approach by comparing

its results with those of a more commonly used tech-

nique that uses seasons of standardized monthly spans,

something we have termed the monthly approach. This

comparison was useful because the monthly approach

demonstrates what occurs when a method is used that

does not emphasize precise estimates of seasonal transi-

tions. The monthly approach effectively designated a

fixed onset date of the wet season (1 June) for each year

of study. Because the actual dates for onset tended to

be highly variable, this fixed date generally fell some

time before or after the actual onset date of any given

year. Therefore, the monthly approach tended to assign

dry periods to the wet season or wet periods to the dry

season, resulting in a ‘‘dilution’’ of how seasonality

was described. As a result, statistical models using the

monthly approach had much less predictive power than

models generated using the CRA approach [models

with R2 scores of ;(0.14–0.22) versus models with R2

scores of 0.56–0.61]. Overall, the comparison between

the two approaches made it clear that gaining insight

into climate–wildfire relationships in the region depends

on the accuracy with which seasonal transitions are

modeled.

b. Relationship of ENSO with seasonal rainfall
and wildfires

We sought to determine if ENSO was related to onset

dates and durations of the dry and wet seasons, and if

these relationships appeared to have effects on wildfires.

In this examination we found that the years studied

could be divided into two groups. The first group con-

stituted the bulk of the years, and for this group there did

not appear to be relationships between ENSO and sea-

son durations or onset dates. In this group ENSO cycled

consistently, with sea surface temperatures that peaked

in winter months and that gradually declined during

succeeding months. This gradual decline allowed typical

patterns of seasonal rainfall to assert themselves by late

spring–early summer. Years with strong ENSO condi-

tions were therefore not followed by unusual onset dates

or season durations compared to years with ENSO neutral

conditions. This result contrasted with a study by Lima

and Lall (2009) that found that wet seasons in southern

Brazil tended to start later in the year under El Niño

conditions.

This first group was also characterized by wildfires that

were influenced by how ENSO regulated dry-season

rainfall. There were fewer wildfires and less area was

burned during El Niño events because these events pro-

duced low pressure over the Florida peninsula, allowing

the jet stream to move farther south and to frequently

push strong storm fronts through the region (Hardy and

Henderson 2003). This pattern was effectively illus-

trated by peaks in CRAs (e.g., 1987 in Fig. 4). During

some El Niño episodes, sufficient rainfall was generated

in the winter–spring to produce a bimodal rainfall pat-

tern, such as occurred in 1983 (Fig. 4). Such bimodal

patterns are unusual in the region, and are normally

found .300 km to the north where the jet stream has a

more consistent influence (Chen and Gerber 1990; Olson

and Platt 1995; Huffman 2005). Conversely, La Niña ep-

isodes produced high pressure over the region, steering

the jet stream north and resulting in less frequent and

weaker storm fronts. This pattern was illustrated with

trajectories of CRAs that were relatively flat and steeply

declining (e.g., 1989 in Fig. 4). Consequently, there were

more intense droughts during the dry season and more

wildfire activity. Our results regarding ENSO, rainfall,

and wildfires were similar to those of other studies con-

ducted in south Florida (Brenner 1991; Beckage et al.

2003). Similar associations are produced by ENSO

worldwide, but often in reverse, with El Niño events

inducing drought and greater wildfire activity, and with

La Niña events producing more moisture (e.g., in parts
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of Asia and south America) (Siegert et al. 2001; Le Page

et al. 2008).

The second set of years constituted only two cycles

of ENSO during our study: one in 1956/57 and the other

in 1997/98. Despite being few in number, these cycles

proved to be important for understanding the overall

character of ENSO and how it affected rainfall and

wildfires at the study site. During these years, ENSO

conditions in winter months were followed by rapid shifts

to the opposite phase, and they therefore produced ab-

normal rainfall patterns with associated changes in onset

dates and season durations. For example, the winter

months of 1956/57 were undergoing the tail end of a La

Niña, but these conditions quickly cycled into a strong

El Niño phase starting in April 1957. This cycling co-

incided with a strong increase in rainfall, and accordingly

the CRA approach assigned an early date (6 April) for

wet-season onset for this fire year (Fig. 4). Similarly,

El Niño of 1997/98, commonly referred to as the Super

El Niño (Philander 2004), featured rapid shifts in phase

and unusual seasonal lengths. It started in the wet season

of 1997 and continued until April of 1998, and over this

time rainfall amounts typical of the wet season persisted

until March 1998, well past the date when the wet season

normally ended (around the beginning of October). Af-

terward, ENSO rapidly cycled through a neutral period

and into a La Niña phase by July, and during this time

rainfall was particularly unpredictable, with very little

arriving during April–June. The CRA approach there-

fore described the dry season of 1998 as being abnormally

short and very dry (Fig. 4), a description that corre-

sponded accurately with the frequency and area burned

by wildfires during this season.

Therefore, our analysis suggested that the use of flexible

seasonal spans was important for describing ENSO’s

particularly stochastic episodes and how they related to

rainfall and wildfires. This importance of flexible seasonal

spans was further highlighted when we compared our re-

sults to those based on a monthly approach that estimated

the intensity of ENSO over winter months. This approach

worked well when examining relationships in the first

group of years, but it was ineffective for the second group.

For example, during the Super El Niño the approach es-

timated a dry season that was very wet (Fig. 3b), and it

therefore predicted a wildfire season of particularly low

intensity. This low estimate was the opposite of the actual

result, and the lack of accuracy for this fire year was very

apparent while performing statistical analyses (see outlier

in Fig. 5b).

Our finding that particularly strong ENSO episodes

produced unusual patterns in rainfall and wildfires

agrees with other studies worldwide (Siegert et al. 2001;

Lima and Lall 2009; see sources in Ghil et al. 2002).

Thus, we postulate that for many regions the relation-

ships between ENSO and wildfires may be modeled

more effectively using the CRA approach or a similar

‘‘fine-tuned’’ approach. Moreover, in the future even

more unusual ENSO episodes may occur under global

warming. Some climatologists predict that global warming

will constrain the equatorial Pacific to El Niño conditions,

but that these conditions will be occasionally punctuated

by strong La Niña episodes (Timmermann et al. 1999;

Tsonis et al. 2003). Developing methods to describe the

seasonality of the more unusual years, therefore, may be

critical.

5. Conclusions

In south Florida, the largest and most important wild-

fires occur with precise seasonal timing, that is, around

the onset of the wet season (Slocum et al. 2007). As a

result, to effectively model climate–fire relationships in

this region, it is important to describe the wet and dry

seasons in a flexible manner and to employ a finescale

unit of time (i.e., days rather than months). Moreover,

ENSO plays a central role in governing wildfires in the

region. In most years ENSO tended not to be strongly

associated with the onset and cessation of seasons, but in

some years there appeared to be important relationships.

Because of the temporal resolution involved in this sys-

tem of ENSO, wildfire, and seasons, it is important to use

an approach—such as the CRA approach—that precisely

delimits seasonal spans and thereby allows in-depth ex-

amination and modeling of the data.

Based on our results, we propose that the CRA ap-

proach or similar ‘‘fine tuned’’ approach should prove

useful for modeling seasonal wildfire regimes in many

regions. We make this assertion because seasonal climate

plays a central role in governing most, if not all, fire-prone

ecosystems. Moreover, studies examining various aspects

of seasonal climate reveal that seasonal transitions tend

to be highly variable (Stewart et al. 2005; Slocum et al.

2007; see sources in Camberlin and Diop 2003 and in

Lima and Lall 2009). This assertion is also supported by

other studies demonstrating the importance of describing

seasonality in a way that is congruous with how wildfires

propagate and spread. For example, in mountainous re-

gions fuel availability is regulated by snowmelt, and it is

therefore important to precisely define when snowmelt

peaks in order to predict wildfire activity (Stewart et al.

2005; Westerling et al. 2006). Based on this evidence,

we advocate using advances in quantifying seasonality,

combined with advances in modeling teleconnections, to

produce new wildfire models of substantially improved

accuracy. These new models may include those that ex-

amine how teleconnections interact to influence climate
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and wildfires (e.g., Heyerdahl et al. 2008), those that ex-

amine spatial patterns of climate and wildfires, and those

that predict–forecast wildfires stemming from different

ignition sources (e.g., lightning fires versus anthropogenic

wildfires such as those ignited by ordnance). All of these

models may help land managers and policy makers con-

trol wildfires, as well as more effectively use them to

maintain ecosystems that are naturally reliant on fire.
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