
Available online at www.sciencedirect.com

Review 

Climate change and opinion dynamics models: Linking 
individual, social, and institutional level changes
Yoon Ah Shin1,1, Sara M. Constantino2,2, Brian Beckage3,3 and  
Katherine Lacasse4,4

Opinion dynamics models are increasingly used to understand 
changes in opinions, behaviors, and policy in the context of 
climate change. We review recent research that demonstrates 
how these models enable the linkages between individual, social, 
institutional, and biophysical factors to explain when and how 
social change emerges over time and what its impact might be on 
emissions and the climate system. We focus on applications of 
opinion dynamics models to climate change and describe how 
factors interact in those models to create feedback loops that 
reinforce or dampen change. We demonstrate how these models 
reveal the dynamics of consensus or polarization in climate 
opinions, the evolution of sustainability technologies and policies, 
and when and how interventions or negotiations related to climate 
change are likely to succeed or fail.
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Introduction
Greenhouse gas emissions, global temperatures, biodi
versity loss, and other indicators of climate change con
tinue to rise. Despite the urgent need for coordinated 
climate action and recent advances in climate science 
and technological solutions, current efforts to address 
climate change are insufficient. The politicization of 
climate change and polarization in public opinion about 
climate change have played a key role in delaying co
ordinated action in the United States and beyond [1,2]. 
For example, public opinion impacts how salient ad
dressing climate change is to local policy makers [3] or 
can lead to varying support for specific climate policies 
depending on the details of their design [2].

Public opinion dynamics are complex social processes 
that depend on people’s beliefs and personal experi
ences, as well as peer influence, social norms, political 
views, and media messaging to name a few [4,5]. To 
examine the individual and interactive impacts of these 
factors on public opinion about climate change and re
lated sustainability technologies, climate modelers have 
increasingly sought to enhance the representation of 
human opinions, behaviors, and social dynamics within 
natural and ecological system models [6–8].

We argue that opinion dynamics models (ODMs) offer 
an opportunity for teams of behavioral scientists and 
modelers to examine how societal and biophysical pro
cesses interact in the context of climate change. An 
ODM is a framework used to study how and when in
dividuals’ opinions evolve and spread within a group 
over time [9–11]. ODMs often simulate interactions 
among individuals who hold differing opinions [10]. 
Climate ODMs enable researchers to bridge across dif
ferent societal levels [12] by treating individuals as si
tuated and coevolving with broader contexts, including 
groups or social structures, institutional environments, 
and the biophysical Earth system [13]. Through these 
integrations, ODMs reveal the dynamics of consensus, 
polarization, and societal transitions around climate 
change in various contexts. These insights can explain 
the evolution of related technologies and policies 
[14–16] or when and how interventions or negotiations 
related to climate change are likely to succeed or fail 
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[17–19]. Additionally, coupling ODMs with climate 
system models enhances climate change predictions, 
clarifies the source of uncertainty in different trajec
tories, and identifies potential measures to overcome 
mitigation barriers [4,20–22]. Climate ODMs offer in
sights about why this might differ across contexts, why 
polarization appears increasingly entrenched, and the 
role of social dynamics, institutions, and climate change 
itself in such processes [23–28].

We briefly introduce ODMs followed by a review of the 
most recent applications to climate change. We identify 
individual, social, and institutional-level factors that 
have been tested in these models, discuss the role of 
reinforcing and dampening feedbacks in systemic 
change, and conclude with existing gaps and future di
rections that we expect will enrich both the behavioral 
science of climate change as well as the science of cou
pled human–climate systems.

Opinion dynamics models and climate 
research
ODMs have been used across disciplines, including 
physics, mathematics, computer science, political sci
ence, economics, psychology, and public policy [9]. 
ODMs can be developed using various methodological 
approaches, including mathematical functions 
[4,10,14,20,26], agent-based modeling [15,27,29,30], 
network approaches [31], game-theory approach [25], 
and data-driven modeling [32]. For example, system 
dynamics models provide an integrative, mathematical 
framework to model interactions and feedbacks among 
various processes influenced by multiple factors and can 
link microlevel processes to macrolevel phenomena 
[11,33]. In agent-based modeling, a finite number of 

connected actors, each with a discrete or continuous 
opinion, adjust their views based on new information 
and interactions, following simple mathematical rules. 
[34]. In this sense, actors are modeled as embedded in 
social spheres.

While the earliest ODMs were used to understand the 
conditions leading to opinion consensus, more recently, 
they explore diverging or polarizing public opinion [35,36]
by varying the features of actors and their interactions or 
affiliations (see Table 1 for glossary of terms), including 
actors with strong opinions (e.g. stubbornness or self- 
persistence) [37,38], homophily in social interactions [39], 
and biased assimilation of new information [40,41] to 
understand how and why polarization has increased and 
what measures might achieve consensus. ODMs also 
examine how factors in the information environment, 
such as misinformation [42], opinion inoculation measures 
[43], algorithm filters [44], and communication frictions 
[45] contribute to misperceptions or biases.

ODMs are being increasingly applied to the issue of 
climate change [6,46]. These models aim to understand 
how individual, social, institutional, and biophysical 
factors interact (Figure 1) to shape the distribution of 
climate opinions and policy support [23,47,48] or emis
sions-relevant behaviors [4,20], including the adoption of 
specific technologies such as electric vehicles or re
sidential solar [16,32,49] or moving away from emissions- 
intensive behaviors, such as meat consumption [21]. 
Other models examine how opinion dynamics interact 
with institutional-level measures to shape outcomes 
such as climate policy implementation [4,14,15], devel
opment of sustainable infrastructure [30], or climate 
negotiations [17].

Table 1 

Glossary of definitions 

Concepts Definitions

Stubborn or self-persistent actors An actor’s strong adherence to the initial opinion so that they are less likely to change their opinions.
Homophily A strong preference to interact only with people with similar opinions or a similar social identity.
Biased assimilation and 
confirmation bias

The tendency to seek out information or interpret information in a way that supports your initial opinions.

Opinion inoculation A group of actors who try to act as a barrier to the spread of disinformation.
Social influence Changes in an individual’s thoughts, feelings, attitudes, or behaviors that result from interaction with 

another individual or a group.
Social norms A shared standard of the most common or acceptable behavior within a group or community. Based on 

what people believe to be normal, typical, or appropriate.
Utility function Used to predict how an actor will behave based on a mathematical representation of their preferences. 

Determines which action will maximize the actor’s welfare or satisfaction.
Self-efficacy A person’s belief in their ability to perform the actions needed to achieve a specific goal.
Network topology The arrangement of the elements, including the number of actors and connection features between 

actors, in a social network.
Theory of planned behavior A psychological model proposing that behavior is determined by behavioral intentions, which are 

shaped by an actor’s attitude about a behavior, subjective norms about the behavior, and perceived 
behavioral control.

Protection-motivation theory A psychological framework that explains how people react to perceived threats and are motivated to 
protect themselves.
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Individual-level factors
Individual actors in ODMs vary in their psychological 
richness (Table 2). While some models assume rational 
actors who carefully weigh risks, costs, and benefits [27,49]
using a utility function to identify an optimal response 
[14,22,24,25,31], others introduce more psychological rea
lism by including individual differences in traits or cogni
tive constraints or biases [4,20,48,51]. Some models 
represent actors as relatively homogenous [22,26], while 
others include heterogenous actors that vary in their traits 
or strategies [17,23,24,30,32,47]. Other models test specific 
psychological or empirically informed theories of human 
decision-making such as theory of planned behavior 
[16,20,21] or protection-motivation theory [21,27].

Social-level factors
A frequent feature of ODMs is that individuals’ opinions 
and decisions are heavily influenced by surrounding 
people or one’s affiliated groups (Table 2). Individuals 
tend to follow the opinions or behaviors of their neigh
bors in a network. The network might represent geo
graphic proximity [50], a social or political identity group 
[15,27,30], or the entire general public [4,20]. ODMs can 
also examine the effects of different social network 
structures — how actors are connected to other actors — 
on the spread of opinions or behaviors, often including 
homophily or a preference for interacting with similar 
others [4,14–16,24,25,39,47,48].

Figure 1  

Current Opinion in Behavioral Sciences

An illustration of how a society (social system) interacts with the biophysical environment. The society is composed of individual, social, and 
institutional levels that influence one another. Individuals hold varying opinions, attitudes, and beliefs about climate change risks and their relationship 
with the natural environment. These factors influence self-efficacy and shape personal preferences or biases regarding certain emissions-relevant 
behaviors, policies, or technologies. At the social level, individual attributes are shaped by existing social norms within the population, interactions 
within affiliated groups, and social network topology. Additionally, institutional factors — such as policies, media and government messaging, culture, 
and power asymmetries — play significant roles in shaping both individual attributes and broader social norms. These diverse factors, embedded at 
different social levels, interact with one another to influence human activities, such as burning fossil fuels, deforestation, and industrial processes. 
These activities have increased the concentration of greenhouse gases in the atmosphere, resulting in temperature anomalies and ultimately climate 
change at the biophysical level. The changing biophysical environment then causes extreme events that impact not only individual experiences and 
perceptions but also social norms, policy, and media and governmental messages. These coincidental changes reshape structures and feedback 
loops across individual, social, and institutional levels.  
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Institutional-level factors
ODMs also frequently specify features of the institu
tional context (Table 2), defining human-made con
straints that influence individual-level decisions through 
the introduction of legislation, impacts on the monetary 
costs or benefits of different actions, or infrastructure 
development [54]. For example, a policy that introduces 
economic incentives for pro-climate behaviors and dis
incentives for emissions-intensive ones will increase the 
likelihood that an actor engages in pro-climate behaviors, 
all else being equal [4,15,22,49]. Signals from media, 
government actors, or an election can communicate 
broad norms and opinions [14,23,27,50]. Less formal 
institutions can also influence opinion dynamics by 
conferring power (e.g. through economic status, fame, 
and reputation) to a few actors [18] or nations [17] over 
others. Culturally transmitted value systems can also 
shape climate-related opinions and behaviors [32].

Feedback loops: processes of interdependent 
system change
ODMs make explicit the processes by which a system 
changes or adapts over time. They are often character
ized by feedback loops, which can amplify or dampen 
the influence of perturbations to a system (Figure 2). 

Feedback loops occur when model components interact 
such that actions or decisions at one point modify sub
sequent actions or outcomes at other levels. Reinforcing 
(positive) feedback loops can accelerate change and 
destabilize a system — this is similar to concepts such as 
‘the spiral of action’ [55] or ‘a slippery slope’ [56]. Bal
ancing (negative) feedback loops slow change and in
crease the stability or resilience of a system — concepts 
such as ‘echo chambers’ [57] or a valley in an ‘attractor 
landscape’ [58] reflect balancing loops.

Reinforcing feedback loops and tipping points
Two common reinforcing feedback loops in climate 
ODMs are endogenous cost reduction effects and social 
learning effects [4,15,27,30,32,49], which can create ra
pidly increasing benefits to adopting a technology or 
behavior as more and more people adopt it. As is dis
played in Figure 2a, monetary costs and associated risks 
often fall as more people adopt a technology, and the 
lowered costs lead to more adoption by a wider range of 
people. Greater adoption can also change the behavioral 
social norm, leading to more positive public opinion and 
imitation, both of which drive endogenous social change. 
These reinforcing feedback loops can be jump-started 
by sustainability policy measures, such as the 

Table 2 

Driving factors in climate opinion dynamics models. 

Levels Descriptions Examples

Individual level Perceptions of costs and 
benefits

• Personal experience with climate change or extreme weather [4,27,29]
• Real or perceived behavioral costs [27,49]
• Preferences or utility functions [14,15,22,24,25,31]
• Technology risk aversion [32,49]

Traits and cognitive processes • Risk perceptions about climate change or environmental extreme events 
[18,20,21,23,27,28,48,50]

• Strength of initial opinions/stubbornness [12,14,17,18,20,22,23,47,48]
• Self-efficacy [20,21,27]
• Environmental identity [50]
• Biased assimilation/confirmation bias[4,20,48]

Social level Social influence and norms • Social norms of the population [4,6,17,19,22,23,29,49,51]
- Election results [14]

• Social influence or norms of neighbors or a subgroup of the population 
[16,18,24–27,30,31,48,50]

• Homophily by subgroups
- Shared opinion [4,39,48]
- Economic status: rich vs poor [15,16,24,25]
- Political affiliation: right vs left political party [14,15]
- Social identity [47]

• Network topology[23,24,47,50]
Institutional level Formal institutions • Policy levers [4,16,19,26,30,32,49,51]

• Messages from media or government [23,27,50]
Less formal institutions • Cultural values [32]

• Power asymmetries:
- Leaders vs rest [18]
- Opinion leaders vs followers [52,53]
- More vs less powerful nations [17]

Biophysical level • Extreme events or changing climate [4,18,20–22,25,26,28,29]

Table 2: Illustrative list of prominent factors frequently included in climate ODMs at each of the societal levels. Many of these factors influence 
climate opinion dynamics but also update and change in response to shifting climate opinions among actors in the model.
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introduction of bike lanes or subsidies for electric ve
hicles, that reduce costs of adoption for early movers 
[30,49] and communicate a changing social norm 
[4,59,60]. When policies are endogenous [4,15,30], these 
dynamics can be reinforced as people’s behaviors and 
opinions change and they, in turn, demand or accept 
more stringent policies.

Reinforcing feedbacks can create a tipping point, 
where a small perturbation can lead to a large and 
sometimes rapid endogenous change that gives rise to a 
qualitatively different system state [6,28,59,61]. Tip
ping points in social behavior are sometimes modeled 
by a threshold — the number or proportion of others in 
one’s network who must make a decision before a 

given actor does so — that captures the inter
dependency among actors’ behaviors or opinions 
[62,63]. For example, in some models, the “committed 
minority” or “trendsetter” group of early adopters is 
slow to grow due to initial high costs of a technology or 
due to social friction of having a unique opinion, which 
can lead to self-silencing [19,59]. However, at a certain 
tipping point, the number of adopters is great enough 
that they have made it significantly less costly for 
others to adopt through impacting social learning or 
normative pressures, reducing costs, or returns to scale. 
Diffusion of adoption now accelerates since the opi
nion or behavior is not only viewed as more common, 
but also as morally correct [59]. This suggests that 
policy interventions aimed at making changes more 
visible to neighbors are likely to have a greater impact 
than those that simply encourage more discussions 
among neighbors [19,60].

Balancing feedback loops and path dependence
Balancing or dampening feedback loops are also 
common in climate ODMs. For example, social norms 
can have the reinforcing effect once enough people 
change, but they can also initially work to maintain the 
status quo [25,26,59,64]. The perception that most 
others do not support climate policies or adopt a tech
nology can slow change that might otherwise occur due 
to increasing climate concerns or decreasing barriers to 
adoption [19,22,49]. This balancing feedback can persist 
until a behavior or opinion reaches a critical adoption 
threshold [19,22,49]. In the context of climate change, 
widespread underestimation of pro-climate opinions and 
behavior may thus stifle climate action [19,65].

Balancing feedback loops also exist between the human 
and climate systems. As is displayed in Figure 2b, 
adoption of sustainable behaviors will lead to emissions 
mitigation. This might eventually reduce extreme 
events along with the public’s associated risk percep
tions about climate change and thereby decrease their 
willingness to engage in further mitigation activities 
[4,6,20,21,25]. Since there is a delay between emissions 
reductions and impacts on global temperature or ex
treme events, the balancing effect generally occurs 
slowly over the course of a model run. However, re
duction in risk perceptions may occur more quickly if 
cognitive processes such as biased assimilation alter how 
actors process incoming temperature or weather in
formation [4]. Additionally, this balancing loop is often 
one of several loops within a climate ODM, and the 
reinforcing feedback loops (e.g. endogenous cost re
ductions, social learning) that work on a shorter time
scale might overcome the effects of this balancing loop.

Path dependency refers to the long-lasting effect of early 
decisions or choices on subsequent ones, which can also 
exert a dampening effect on a system. The adoption of 

Figure 2  

Current Opinion in Behavioral Sciences

Examples of reinforcing and balancing feedback loops included in 
recent climate ODMs. Green arrows (+) indicate a positive or reinforcing 
relationship, such that an increase in the first variable leads to an 
increase in the second variable, similar to a positive correlation in that 
both variables change in the same direction. Pink arrows (-) indicate a 
negative or balancing relationship, where an increase in the first variable 
leads to a decrease in the second variable, similar to a negative 
correlation in that variables change in opposite directions. R indicates a 
reinforcing loop and B a balancing loop. Two dashed lines across an 
arrow indicate a delay in how long it takes for one variable to impact the 
next one. The relationships between the variables in Figure 2 a,b are 
described in the text below.  
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some technologies or early policy decisions, such as the 
type of energy infrastructure or transportation system 
built, can constrain future options [14,49]. This creates 
the challenge of identifying ways to overcome existing 
lock-ins (e.g. as in the case of fossil fuel infrastructure) 
while also identifying policies and pathways that lock-in 
‘desirable’ behaviors, such as renewable energy or low- 
carbon transportation options.

What insights do climate opinion dynamics 
models provide?
Insights about opinion polarization and convergence
ODMs reveal conditions that tend to lead to polarization 
or extreme opinions. For example, greater homophily 
often increases opinion polarization [25,39,48]. Inter
acting with similar others and estimating social norms 
based on those interactions can create echo chambers 
leading to a false perception of consensus and reducing 
the likelihood that actors change opinions or behaviors in 
the opposite direction [4,25]. At the same time, if actors 
are somewhat ambiguous about their opinion when in
teracting with others, then a population that starts off 
with a heterogenous distribution of climate concern can 
end up with high climate concern at the population- 
level, even with homophily [48].

Widely shared external shocks or carefully designed 
policy levers can mitigate polarization and increase 
consensus, especially if they occur before polarization or 
habits are too extreme or fixed [14,26,28]. However, 
when the impacts of extreme climate events are asym
metric, impacting certain groups more than others, po
larization can increase [25].

Once polarization exists, it can limit the influence of 
climate policies or messaging due to reduced effects on 
those with extreme opinions [23,24,26]. High polariza
tion can also lead to oscillations in renewable energy 
investments and emissions as governments attempt to 
appease opposing factions of the population [14,26]. 
However, if one party is stronger than the other, that 
party tends to lead the changes and investments tend to 
shift in their direction due to technological lock-ins [14].

Insights for climate and policy outcomes
Some climate ODMs have shown that when social in
fluence on opinion is accounted for, policy levers may 
not need to be as stringent to have the same emissions 
impact [15,24,30,46]. Weaker climate policies may take 
longer to make big impacts, but since they often have 
more public support, they may be worthwhile compared 
to stringent policies that can sharply alter behavior but 
often result in public backlash [46]. However, when 
social influence is weak and there is strong homophily, 
actors may resist and delay climate policy for longer, 
leading to substantial global temperature warming [4].

Models that account for heterogeneity in climate im
pacts, for example as a function of wealth, can lead more 
affected groups (e.g. the poor) to adopt mitigation efforts 
earlier than the rest of the population [25]. If groups that 
are more affected interact with those less affected, social 
influence can lead those less impacted (e.g. the rich) to 
also adopt mitigation behaviors.

Interpreting insights from complex adaptive systems
While much social science research assesses relation
ships between variables at a single point in time or over 
short time horizons, often to infer causal relationships, 
ODMs are complex adaptive systems that model the 
evolution of cross-level interactions over longer time 
frames. They thus reveal different relationships and 
patterns that are not easily discernible from common 
methods in the behavioral sciences such as lab experi
ments or surveys. For example, introducing ‘leaders’ 
with greater social influence does not automatically 
speed up shifts of public opinion since leaders in two 
opposing opinion groups can slow change as they per
suasively push in different directions [18]. Similarly, 
when some nations are more influential than others in a 
climate negotiation model, the ideal negotiation strategy 
changes, and being an early mover who holds their cli
mate position is not as effective as when all nations are 
equally influential [17].

While these models may not be ideal for isolating causal 
relations between two variables, they can identify 
feedback loops, influential factors, and key leverage 
points for an outcome of interest (e.g. global carbon 
emissions), including the role of social influence and 
norms [4,6,21,22,32] or the speed and stringency with 
which governments enact climate policy [4,15,24,26]. 
Indeed, these types of insights — how cross-level factors 
interact to bring about or stifle climate action — are one 
pathway toward an embedded behavioral science that 
links individual and institutional level inputs to under
stand both the system dynamics and the overall effects 
on outcomes at different levels.

Future directions
There are some gaps in existing models that can inform 
directions for future research. First, future climate 
models could account for individual and social hetero
geneity by extending existing climate ODMs to include 
the evolution of social power [66] and the integration of a 
wider range of network topologies [37,67]. In many of 
the models reviewed, the climate system is an external 
or exogenous input to the model. Building on recent 
examples [4,20,22,25], efforts to endogenize climatic 
responses by coupling human system models to simpli
fied climate models is an important path forward for 
understanding the bidirectional interactions between 
group dynamics, including political and other interest 
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groups, and the changing climate. These coupled 
models could also elucidate the effectiveness of dif
ferent policy measures in altering emissions trajectories, 
including the sequence and packaging of policies to in
crease bipartisan support and buy in. By taking a sys
tems-of-systems approach, climate ODMs can expand to 
purposefully include key feedbacks between societal 
levels and the climate (see Figure 1) to integrate dis
connected disciplinary knowledge and offer new system 
understandings and insights [68].

Additionally, climate ODMs could be psychologically 
and socially enriched through more iterative collabora
tion between computational modelers and behavioral 
scientists [6,61,69]. In particular, while many ODMs 
share features such as risk preferences, social influence, 
and/or homophily, they vary in how these concepts are 
operationalized, which can lead to very different model 
outcomes [70,71]. For example, the decision to base 
social norms on the population average can slow change 
and promote consensus [19,22], while instead utilizing 
local or subgroup norms can lead to polarization or echo 
chambers [24,25,39,47].

One guide to these decisions is empirical data. Some 
climate ODMs utilize public opinion data sets [4,48] or 
collect their own survey data [15,16] to initialize or 
parameterize models. However, these data do not cover 
all aspects of the models, and there is limited long
itudinal data needed to understand changes over time. 
Incorporation of longitudinal, social media, or even AI- 
generated data could result in new, custom data sets to 
inform models in more nuanced ways. The methods to 
incorporate such data into creating credible synthetic 
populations have been advancing [72–74], and climate 
ODMs will benefit from expanding in this way. It is also 
important to keep in mind that model results that depart 
from empirical findings could indicate that a range of 
outcomes beyond our current experiences are possible in 
complex adaptive systems [69].

When data are not available, researchers may consider 
modeling the same concept in different, theoretically 
informed ways to understand how much variance in the 
model outcomes depends on the modeling decisions, 
similar to parameter sensitivity analyses [36,70]. These 
variations on model components or modules could be 
stored in an open-access code bank, available to re
searchers, and could undergo a process of peer review by 
domain experts.

Overall, climate ODMs are particularly beneficial in that 
they (1) account for complex, multilevel interactions 
relevant to climate change; (2) analyze changes in public 
opinion and other outcomes over long time horizons; (3) 
allow for comparisons in outcomes between different 
scenarios and social conditions; and (4) allow behavioral 

scientists to understand the interdependence among 
actors and the broader structures and systems in which 
they are embedded. As they develop, they will continue 
to offer more insights to inform climate policy, messa
ging and communications, and strategies for introducing 
new technologies that promote social change toward 
sustainability.
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