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Abstract

High-resolution, bias-corrected climate data is necessary for climate impact studies
and modeling efforts at local scales. General circulation models (GCMs) provide
important information about historical and future larger-scale climate trends, but
their spatial resolution is too coarse to investigate localized effects of climate pro-
cesses. Additionally, raw GCM output is characterized by some degree of bias. Two
post-processing procedures known as downscaling and bias-correction are typically
applied to raw climate model output prior to its use in further modeling applications.
Downscaling is the process in which data at a coarse spatial scale is transformed to a
fine spatial scale. Bias-correction refers to a collection of methods in which climate
model output is adjusted such that its statistical properties (e.g. mean, variance,
and potentially higher moments) resemble those of observations in a common clima-
tological period. Bias-correction is a challenge, due to relatively short calibration
and long future time periods and potential spatial misalignment issues between grid-
ded climate model output and observed data. Issues that warrant further research
are 1) spatially-coherent bias-correction, 2), processing of extremes, 3) temporally-
coherent bias-correction, and 4) balancing the bias-correction of future model output
with the preservation of the climate change signal. Performing spatially-coherent
bias-correction is particularly difficult, as model and observed data must be present
in the same location where bias-correction is applied. Depending on the type of
observed data used, this may not be the case. Extremes are challenging to repre-
sent accurately during bias-correction, because extreme values in both observed and
model data are highly variable, limited, and there is greater uncertainty regarding
their correction. Finally, very few bias-correction methods explicitly correct tem-
poral dependence structures of model output. However, it is important that the
temporal dependence of model data resembles that of observed data, as climate vari-
ability is closely linked to temporal dependence. In this body of work, I developed
methodological workflows to generate high-resolution climate data products in which
1) bias-correction is carried out in a spatially-coherent manner, and 2) precipitation
extremes are accurately represented. I also created a new, two-step bias-correction
approach in which the temporal dependence and distributional properties of model
output are corrected. This method allows for sensible bias-correction in both histor-
ical and future time periods and minimizes distortion to the future climate change
signal.
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Chapter 1

Introduction

1.1 Context and background

The research presented in the following chapters was initiated and financially sup-

ported by the Vermont Established Program to Stimulate Competitive Research (VT

EPSCoR), a National Science Foundation program that brings together researchers,

policymakers, stakeholders, members of the private sector and other collaborators

to solve problems related to the sustainability of natural, social, and economic re-

sources of the Lake Champlain Basin. Lake Champlain Basin is a topographically

diverse region of approximately 13,500km2 that encompasses Lake Champlain and its

associated watersheds.

The effects of climate change on the ecological, social, and economic systems of

Lake Champlain Basin are of great concern. This region, as well as the Northeastern

United States in general, is experiencing significant warming and increased precip-

itation. These trends, along with greater climatic variability, extreme precipitation

events as well as droughts, are expected to continue in the future [1]. One objective of
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VT EPSCoR is to provide pertinent scientific research to assist policymakers, stake-

holders and the broader public in developing strategies to mitigate and/or adapt to

climate change. In this context, the availability of high quality climate products at

local scales is critical.

The research in this dissertation contributes novel statistical methods to construct

accurate climate data products at fine spatiotemporal resolutions. The statistical

methods and workflows I developed improve the accuracy and reduce uncertainty

in downscaled, bias-corrected climate data. I applied these methods to precipita-

tion and temperature simulations from a regional climate model and constructed

high-resolution, daily climate products over historical and future time periods. The

proposed methodologies can be applied to other downscaling and bias-correction ap-

plications.

1.2 Literature review

As the impacts of climate change become more severe and widespread, scientists,

practitioners, and policy makers require accurate, fine-scale climate data for local

climate impact studies. Ecological, hydrological, agricultural, and economic studies,

which often rely on models driven by climate data, are typically conducted at fine

(≤ 1km) spatial resolutions [2]–[4]. Though general circulation models (GCMs) are

indispensable tools for modeling past and future climate, their coarse spatial resolu-

tion prohibits them from capturing complex, fine-scale topography, orography, and

climate processes [5], [6]. In addition, GCMs simplify climate through parameteri-

zation schemes, resulting in the inadequate representation of some climate processes
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[7]. Consequently, output from GCMs is characterized by a non-trivial degree of bias

[7]–[9]. Typically, post-processing steps such as downscaling and bias-correction are

applied to climate model output prior to its use in modeling applications.

1.2.1 Overview of downscaling methods

In the downscaling process, climate model output is transformed from a coarse to

finer resolution. Downscaling is especially important in regions characterized by to-

pographically varied terrain [10], [11], as elevation has a large influence on climate

variables such as temperature and precipitation [12]. The two main types of downscal-

ing are dynamical and statistical downscaling. In dynamical downscaling, a regional

climate model (RCM) is forced by GCM or reanalysis data. An RCM simulates

climate processes at a finer resolution than forcing data by incorporating fine-scale

landscape and atmospheric processes [5], [6], [13], [14]. RCMs are computationally

intensive, although they typically require less processing power than GCMs [15], [16].

Localized climate processes, including extremes [17], are generally better reproduced

in RCMs compared to GCMs [18], although seasonal biases in extremes may remain

[19]. Despite the sophistication and the ability of RCMs to model climate over re-

gional scales, they 1) are unable to fully capture the fine-scale effects of complex

topography [20], 2) simplify climatic processes through model parameterizations 3)

cannot account for all the natural variability of climatic processes, and 4) under- or

over-estimate complex atmospheric feedbacks [7].

Statistical downscaling involves establishing statistical relationships between coarse-

scale and fine-scale climate variables [14]. Statistical downscaling is computationally

efficient and can be applied to a variety of climate variables [21], [22]. In contrast
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to dynamical downscaling, a substantial amount of observational data is necessary to

derive statistical relationships necessary for statistical downscaling [14], which may

not always be available. Frequently-used approaches for statistical downscaling are

regression-based methods [5] and principal components analysis [23], [24], weather

classification schemes, and weather generators [14]. Recently, machine learning meth-

ods such as artificial neural networks [25], deep learning [26], and random forests [27]

have been used for downscaling both temperature and precipitation variables.

Linear regression (LR) models establish linear relationships between climate vari-

ables and predictors. LR is simple, easy to implement, efficient, and therefore widely

used [5]. The main shortcomings of LR is the requirement of a Gaussian distribution

for the response variable and a linear relationship between response and predictor

variables [28]. LR is not suitable for downscaling precipitation, as precipitation data

are generally highly right-skewed, and relationships of precipitation and predictors

such as elevation are generally non-linear [12], [28]. LR is best suited for downscaling

temperature climate variables [29].

In weather classification, atmospheric "states" are identified in long-term time

series of observational data that correspond to similar states of future projections from

a GCM [30]. The chosen historical states are then simulated under future conditions.

An advantage of weather classification is that it does not require climate variables

to be normally distributed, so it can be applied to precipitation data [28]. However,

weather classification requires observational weather data of at least 30 years and is

more computationally demanding than regression methods [28].

Weather generators are statistical models that simulate local, daily climate vari-

ables based on monthly climate time series from nearby weather stations [28]. These
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models first replicate precipitation and then simulate other atmospheric variables

such temperature, humidity, and wind conditionally on precipitation. The underly-

ing mechanism in weather generators are Markov processes, where the value of the

climate variable of interest on day t is only dependent on the value on day t − 1 [30].

Weather generators are especially sensitive to missing values and errors in observa-

tional data [28].

Simple statistical interpolation methods, such as topographical downscaling can

also be an effective downscaling approach. Topographic downscaling combines inverse

distance weighting (IDW) and lapse rates to adjust for fine-scale elevation [31]. In

IDW interpolation, observed values close to prediction locations are assumed to be

more influential in the prediction compared to observed values far from prediction

locations. A limitation of topographic downscaling is the requirement of accurate,

fine-scale elevation data.

More recently, machine learning methods including deep neural networks [26] [32],

random forests [33], and support and relevance vector machines [34] have been used

for downscaling temperature and precipitation variables. Relevance vector machines

[35], artificial neural networks [36], [37], random forests [38] and deep learning neural

networks have been shown to be effective in downscaling precipitation [32]. [37] and

[35] found that support and vector machines and artificial neural networks resulted

in better representation of the mean, rather than upper or lower quantiles of pre-

cipitation variables. [32] reported that adding more layers to a deep neural network

resulted in near perfect representation of temperature and precipitation variables at

a fine resolution. However, [34] noted that machine learning methods tended to un-

derestimate the standard deviation and several other studies reported that machine
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learning methods did not perform as well as regression-based methods. [34] and [37]

found that linear regression-based downscaling methods generally outperformed the

machine learning methods of deep learning neural networks and support and relevance

vector machines. The major drawback to deep learning methods is their computa-

tional cost. As computing power continues to increase, machine learning methods

may become more attractive for downscaling.

The accurate representation of extreme events in downscaled data continues to

be a challenge [39]. Furthermore, there is a need for robust, statistical downscaling

methods that can quantify the uncertainty of downscaled climate data [6], [40], [41].

1.2.2 Review of bias-correction methods

While downscaling can be achieved by relatively simple interpolation methods, bias-

correction is far more difficult, due to several factors. First, climate model output

is typically characterized by a short calibration period and long future period and

observed data may not be available over the entire study area. In addition, uncertainty

of the bias-correction method is difficult to quantify. Finally, there is often a spatial

misalignment issue between model output, which is represented as averages over grid

cells, and observations, which may be point-based.

The main goal of bias-correction is to modify statistical properties of climate

model output such that they resemble those of observed data. Bias-correction ad-

justs the mean, variance, and potentially higher moments of climatological variables

[8], [9]. Generally, the most widely-used bias-correction methods can be classified

into three categories: 1) linear scaling [42], [43]; 2) nonlinear scaling [44]; and 3)

quantile-mapping, including distribution mapping [45] and empirical (distribution-
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free) quantile mapping [46]–[48]. Methods within the three categories differ in their

ability to correct higher-order moments of simulated climatological variables. For

bias-correcting temperature variables, linear scaling and empirical quantile mapping

(EQM) are often used [22], [49]–[52]. EQM, a nonparametric and highly flexible

method, can correct the mean, variance, and higher moments of temperature and

precipitation variables [22], [53]. Linear scaling is a simple method in which dif-

ferences between observed monthly means and those of simulated data are added

to simulated data [42]. Despite its simplicity, linear scaling has been shown to be

effective for bias-correcting temperature variables [42], [54].

In linear scaling (LS), model output of meteorological variables is corrected based

on differences between raw model and observed data [42]. It is closely related to

the “delta change” and “factor change” methods for bias correction [46]. In the

delta change method, an observed time series is added to a climate change signal

(CCS), typically by month. In the expressions below, T and P refer to temperature

and precipitation time series, respectively; subscripts Obs, Mod, and Corr refer to

observed, raw model, and corrected model values, and subscripts f and h denote data

in the future period and historical period of model output and single values of time

series T and P will be denoted with a subscript i. Variables with a bar (e.g. T̄ )

denote the mean of that variable.

Temperature is corrected in an additive manner (generally by month):

TCorr,i = TMod,i + T̄Obs − T̄Mod.

Raw model precipitation is corrected with a multiplicative ratio by month to avoid
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negative values:

PCorr,i = PMod,i · P̄Obs

P̄Mod

.

After the application of LS, the mean of corrected model output will correspond

perfectly to those of observed data [42]. LS requires only a modest amount of observed

data [46] and has been used used to correct GCM simulations for daily precipitation

[42], maximum temperature, and precipitation runoff [43]. LS is limited in that it can

only correct the mean of climate variables and does not account for non-stationarity

in future climate model projections [22]. Simple scaling methods may also cause large

deviations in model errors compared to more sophisticated methods [55].

The power transform method (PT) [56], a non-linear scaling method, corrects the

mean and standard deviation and has only been applied to precipitation variables [44],

[47]. Daily precipitation values are corrected according to the following equation:

Pcorr,i = aP b
Mod,i,

where PMod,i is a raw model precipitation value, Pcorr,i is corrected model precipitation

value, and a and b are constants. The scaling exponent, b is first calculated using an

iterative method such that the coefficient of variation for model and observed data

match on a monthly basis [8]. Then, the scaling constant a is calculated such that

corrected precipitation values have a mean equivalent to that of observed data [8]. PT

was used to bias-correct precipitation simulations across all distributional moments

in Great Britain [8] as well as the Tarim River Basin, China [22]. However, [46] found

that although PT corrects precipitation quantiles, the probability of dry days and

precipitation intensity may not be adequately represented. Thus, PT may be less
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suitable for model data that exhibits large biases in wet-day frequency [44], [46].

Distribution mapping (DM) is a parametric approach within the quantile-mapping

family of bias-correction methods. In DM, simulated and observed climate variables

are assumed to follow parametric distributions [8]. Bias-correction is accomplished

via the use of a transfer function (TF), which minimizes the difference between the

cumulative density functions (CDFs) of model climate variables and observed data.

Wet-day precipitation is typically modeled with a gamma probability distribution

function (PDF) [45], [57]:

f(P |θ, k) = e−P/θP k−1

Γ(k)θk
,

where f(P |θ, k) is the Gamma PDF, P is daily precipitation, k and θ are the shape

and scale parameters, respectively, and Γ is the Gamma function [58]. Typically,

Gamma PDFs are fitted by month, but the performance of DM can be enhanced

by constructing one TF for each day of the year, where distribution parameters are

estimated over 3-month [59], [60], 61-day [53], or 45-day sliding windows [47]. The

DM correction for precipitation is expressed as:

PCorr,i = F −1
P (FP (PMod,i|θMod, kMod)|θObs, kObs), (1.1)

where FP and F −1
P denote the Gamma and inverse Gamma CDFs, respectively, and

θ and k are estimated shape and rate parameters of Gamma CDFs for both raw

model and observed distributions for a particular month (or sliding window time

period). DM for precipitation variables is not limited to modeling with the Gamma

distribution. Mixture distributions such as the Bernoulli-Gamma, Bernoulli-Weibull,

9



Bernoulli-Log-normal, and Bernoulli-exponential have been used for bias-correcting

precipitation [61]. While the Gamma distribution and Gamma mixture models are

generally adequate for representing mean daily precipitation, Kappa and Pearson

Type III distributions [62]–[64], as well as Gamma-Generalized Pareto Distribution

mixture models [65]–[68] and Gamma-Gumbel mixture models [69] perform better in

capturing extreme tails of wet-day precipitation probabilities compared to the Gamma

distribution.

Temperature variables are generally modeled with the Gaussian distribution [46],

[70]:

f(T |µ, σ) = 1
σ

√
2π

e− ((T −µ)2

2σ2 ,

where f(T |µ, σ) is the Gaussian PDF with mean µ and standard deviation σ. The

correction for temperature variables can be expressed as:

Tcorr,i = F −1
T (FT (TMod,i|µMod, σMod)|µObs, σObs), (1.2)

where FT and F −1
T are the Gaussian and inverse Gaussian CDFs, respectively, and

µ and σ are the fitted mean and standard deviation parameters for Gaussian distri-

butions fitted to model and observed data. DM is a widely-used, efficient method

and is advantageous because higher order distributional moments can be corrected.

DM has limited use in situations where climate variables exhibit poor fits to known

distributions [71].

Empirical quantile mapping (EQM) is simular to DM except that the TF is com-

posed of empirical CDFs. EQM can be considered a non-parametric version of DM
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[53]. It is a popular method, as all distributional moments of a modeled climate

variable can be adjusted to match those of observed data [22], and it can be applied

to both precipitation and temperature variables [22], [53]. It generally outperforms

simpler bias-correction methods [8], [52], [61], [72], [73], as well as its parametric

counterpart, DM [61], [65], [67]. The transfer function for correcting model climate

variables can be represented by the empirical cumulative distribution function (ecdf)

and its inverse (ecdf−1):

XCorr,i = ecdf−1
Obs(ecdfMod(XMod,i)),

where Xcorr,i is the corrected value of a meteorological variable, ecdf−1
obs is the inverse

ecdf of observed data, and ecdfMod is the ecdf of raw model data, and XMod,i is the

value of raw model data. Figure 1.1 shows how a TF is used to correct model values.
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Figure 1.1: EQM TF of daily temperature data for the month of April over the period 1976-
2005. Model data was generated by a regional climate model, and observed data was obtained
from climate stations within the Global Historical Climate Network [74]. The corrected value
is obtained by evaluating the TF (black line) at model quantiles. For example, the corrected
value for 15◦C is 16.4◦C, and the corrected value for 35◦C is 40.4◦C. Note that the corrected
value for 35◦C is obtained via a linear extrapolation, as values beyond the extrapolation
threshold are beyond the ranges of data used to construct the TF. In this figure, the linear
extrapolation by [75] is used, but other extrapolations exist.

.
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1.2.3 Challenges in bias-correction

Temporally and spatially coherent bias-correction

Gridded, observational climate products (e.g. Livneh, [76]; Daymet, [77]; and PRISM,

[78]) are often used for bias-correction because of their extensive spatial and temporal

coverage. However, the interpolation algorithms used to create gridded climate prod-

ucts can introduce bias [79] and additional uncertainty when used for bias-correcting

climate model output [80]. Though the spatial resolution of some gridded datasets

(e.g. Livneh and Daymet) is quite high (1km), interpolation can result in some

degree of smoothing of sharp topographical gradients and regional atmospheric pro-

cesses that may have a large influence on extremes [81]. A valuable alternative to

gridded observational data products are long-term, curated station data, such as data

from the Global Historical Climate Network [74]. Station data represent direct cli-

matological measurements and are available globally [82], [83]. The use of station

data, rather than gridded observational products, removes some uncertainty during

bias-correction. Station data are frequently utilized to validate the accuracy of bias-

corrected climate model output but can also be effectual for bias-correcting output

from climate models. For instance, [84] downscaled monthly temperature and precip-

itation simulations from an RCM to climate stations and bias-corrected the simulated

climate variables with station data, resulting in an appreciable improvement in the

accuracy of a hydrological model. [85] showed that incorporating station data in

a geostatistical downscaling and bias-correction approach resulted in full-coverage,

high-resolution monthly temperature and precipitation data that better captured the

complex topographical features of the study area.
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Despite the advantages of station data, its use in constructing full-coverage, bias-

corrected, downscaled climate data, particularly at high spatial and temporal reso-

lutions, is limited. The density and spatial distribution of climate stations are often

irregular, especially in mountainous and high-elevation regions [78]. While the TFs

can be derived from irregularly spaced station data, the resulting TFs must be spa-

tially transferred so that model data in regions void of climate stations can be ade-

quately corrected. For instance, [86] used an interpolation scheme to match stations

to downscaled model grid points and then applied EQM to bias-correct the data.

However, the task of spatially transferring TFs has generally received little attention

in the literature. In Chapter 2 I develop six downscaling and bias-correction work-

flows that allow for spatially-coherent bias-correction based on the use of station data

and evaluate their effectiveness in bias-correcting daily maximum temperature simu-

lations generated by an RCM. I quantified performance of the six methods with the

root-mean-square-error (RMSE) and Perkins skill score (PSS) and used two ANOVA

models to analyze how performance varied among methods. I validated the six meth-

ods using two calibration periods of observed data (1980-1989 and 1980-2014) and

two testing sets of RCM data (1990-2014 and 1980-2014).

It is important that temporal variability is realistically represented in bias-corrected

climate model output, as the modeling of extreme events in modeling applications is

influenced by temporal variability [87]. Additionally, factors such as soil moisture,

sunlight, and heat that are important to human health are influenced by variability

in a variety of meteorological variables as well as extreme climate events [88]. The

correction of temporal dependence as part of a bias-correction method has received

less attention in the literature. [89] and [90] developed a multivariate bias-correction
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method that resulted in the correction of spatial and temporal correlation structures.

In nested bias-correction (NBC) [91]–[93], temporal biases at multiple, pre-defined

time scales are corrected. For instance, [91] used NBC to correct the mean, stan-

dard deviation, and lag-1 autocorrelation of daily GCM precipitation simulations at

annual and monthly scales. In an extension to NBC, [91] performed the correction

at daily, monthly, seasonal, annual, and tri-annual timescales. Though the nested

approaches in [91] and [94] resulted in better representation of temporal structures

of GCM simulations compared to EQM, these approaches assume a temporal depen-

dence structure (e.g. lag-1 linear autoregressive model) and stationarity of model

errors, and require the modeler to choose the temporal scale(s) in which the correc-

tion should be reflected. Bias-correction of temporal dependence has also been done

via signal processing techniques. [95] used the Fast Fourier Transform to decompose

observed and model time series; temporal dependence was then corrected via EQM in

the frequency domain. However, this approach assumes stationarity, and may limit

its use for bias-correcting future model simulations. In a trend-preserving approach,

[96] decomposed observed and model time series using the discrete wavelet transform

(DWT) and corrected biases in mean, standard deviation, and temporal variability

in the frequency domain. However, neither of these studies considered non-annual

variability or variability at fine (sub-monthly) temporal frequencies. In Chapter 4, I

propose a novel trend-preserving method for bias-correction of temperature variables

that features a process convolution approach for correcting temporal dependence.
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Bias-correction of precipitation extremes

Because extreme climate events have disproportionately large impacts on human and

natural systems, it is important that climate products include plausible scenarios of

extreme climate events as well as information on the frequency, intensity and future

trends of extreme events [97], [98]. The ability of GCMs and RCMs to reproduce

extreme tails of climate variables is limited [44]. Therefore, bias-correction methods

for extremes become increasingly important.

Bias-correction of extremes is a challenging task, due to the scarcity of values

in extreme tails of model and observed data and uncertainty regarding correction of

extreme tails. Bias-correction of precipitation extremes is especially difficult, due to

the high variability and skewed distributional properties of precipitation data.

A disadvantage of QM methods, and EQM in particular, is its propensity to

overfit on calibration data, especially at precipitation extremes where data is scarce

and highly variable [8], [45], [99]–[101]. In EQM, TFs are interpolated using linear

interpolation, splines, or other smoothing techniques [102]. Highly flexible methods

such as EQM can generate TFs that correct model data nearly perfectly (overfitting)

but may not generalize to out-of-sample or future model data, which can lead to

instability of the TF at higher quantiles [99], [103], [104]. When applied to future

projections, EQM has been shown to significantly distort future climate change signals

[7], [105] and exaggerate or deflate extreme trends, introducing additional uncertainty

into bias-corrected data [47], [106].

Hybrid EQM approaches that combine parametric and non-parametric modeling

can reduce the degree of overfitting of the TF at extreme tails [106]. In such hybrid

approaches, bias-correction below a specified threshold is achieved via an empirical
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TF (EQM), while bias-correction above the threshold is with DM, based on heavy-

tailed distributions, such as the exponential, Generalized Pareto, Weibull, or Gumbel

distributions [65]–[68], [101], [106]–[108]. Hybrid EQM methods combine the flexbil-

ity of EQM for correcting lower to middle quantiles with the robustness of parametric

distributions for correcting upper quantiles. The use of extreme or heavy-tailed dis-

tributions for modeling extremes can improve bias-correction of tail quantiles [66],

[101], [106]–[109], but the risk of overfitting the TF at distributional tails still exists,

as poor fits to heavy-tailed distributions can introduce outliers [69], [110]. In addition,

selection of the threshold is difficult, as the amount of data beyond the threshold must

be sufficiently large to allow for distribution fitting and must approximate a known

heavy-tailed distribution [66], [111]. There is a need for a hybrid EQM method in

which bias-correction of extremes can be performed without the risk of overfitting

and the introduction of outliers. In Chapter 3, I propose such a hybrid approach,

EQM-LIN, that combines the efficacy of EQM for correcting lower quantiles, with a

robust linear correction for upper quantiles.

Stationarity of model errors

One of the major assumptions of many bias-correction methods is that of stationary

model errors over time [55]. In climate statistics, stationarity usually refers to weak

or second-order stationarity (a less restrictive definition than strong stationarity) in

model errors and thus does not refer to the obvious seasonal patterns most climate

variables exhibit [105]. In a weakly or second-order stationary process, the mean and

variance are constant, and the covariance between values can be described by a co-

variance function which only depends on the separation distance between the values
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[112]. The assumption of stationary model errors over time implies that the correc-

tion established during the calibration period can be applied outside the calibration

period as well [113]. Clearly, the stationarity assumption warrants some scrutiny,

and the validity of this assumption has been debated in the literature [7], [47], [105],

[113]–[115]. Though there is consensus that future model projections should be bias-

corrected with respect to observations [7], there is some debate whether the general

future climate change signal (CCS) should be preserved [7], [47], [113], [116] or not

[103], [115]. Highly flexible bias-correction methods such as EQM are susceptible to

overfitting on (historical) calibration data and have been shown to significantly mis-

represent the CCS of future climate model output [7], [47], [105] [18]. The distortion

of the CCS can be particularly severe for higher distributional quantiles, which could

ultimately result in over- or under-estimation of extreme floods, droughts, and heat

waves [47], [106], [116]. The application of a stationary bias-correction method to

non-stationary data will also add additional uncertainty into bias-corrected data [7],

[114]. So-called trend-preserving bias-correction methods attempt to leverage differ-

ences between historical model simulations and future model projections such that the

bias-correction adequately resolves model bias while preserving the mean CCS [47].

Effective trend-preserving methods represent variations on EQM and include pop-

ular methods such as equidistant quantile matching (EDQM) [116], quantile delta

mapping (QDM) [47], and scaled distribution mapping (SDM) [113].

Generally, in trend-preserving variants of EQM, differences between the distri-

butions of climate variables in historical (e.g. calibration) and future time periods

are taken into account. These methods consist of two main steps: (1) calculating

absolute or relative changes between quantiles of model data in the calibration and
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future time periods, and 2) bias-correcting future model projections via additive or

multiplicative operations.

In EDQM, future model projected data are corrected in an additive manner, where

future quantiles, normalized relative to model simulations during the calibration pe-

riod, are used to adjust the degree to which future data are corrected [116]. For

precipitation, the correction is achieved via 1.3:

Pcorr,i = PMod,i + ecdf−1
Obs(Ff (PMod,i)) − F −1

Mod,h(FMod,h(PMod,i)). (1.3)

Like in EQM, TFs in EDQM are generally constructed by month. [116] demonstrated

that EDQM significantly decreased model bias relative to observed data, especially

at low and high quantiles. [117] showed that EDQM better reproduced rainfall inten-

sity and return intervals of extreme events at climate stations in Canada compared

to non-trend-preserving quantile mapping-based methods. Finally, [47] proposed a

method fundamentally equivalent to EDQM suitable for correcting precipitation, and

showed that, compared to EQM, EDQM resulted in realistic corrections of future

daily precipitation projections especially for upper quantiles.

SDM is a multi-step approach, that, unlike EDQM, scales the distribution of ob-

served data according to projected future changes in the frequency and intensity of

rain days, as well as the likelihood of individual rainfall events, although it can also

be applied to temperature variables [113]. [113] found that constructing TFs using

parametric distributions resulted in more stable results compared to empirical CDFs.

[113] reported that SDM outperformed EDQM, EQM, and QDM in preserving the

future CCS of model data. In practice, SDM is somewhat limited as it is compu-

tationally intensive. In Chapter 4, I propose a novel trend-preserving method for
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bias-correction of temperature variables that features a process convolution approach

for correcting temporal dependence. I found that the proposed method adjusts tem-

poral dependence of model data such that it resembles that of observed data, and

distributional biases of model data were corrected to a greater degree compared to

EQM.
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Chapter 2

Constructing high-resolution, bias-

corrected climate products: a com-

parison of methods

2.1 Abstract

High-resolution, bias-corrected climate data is necessary for climate impact studies

at local scales. Gridded historical data is convenient for bias-correction but may con-

tain biases resulting from interpolation. Long-term, quality-controlled station data

represent true climatological measurements, but as the distribution of climate sta-

tions is irregular, station data are challenging to incorporate into downscaling and

bias-correction approaches. Here, we compared six novel methods for constructing

full-coverage, high-resolution, bias-corrected climate products using daily maximum

temperature simulations from a regional climate model (RCM). Only station data
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were used for bias-correction. We quantified performance of the six methods with the

root-mean-square-error (RMSE) and Perkins skill score (PSS) and used two ANOVA

models to analyze how performance varied among methods. We validated the six

methods using two calibration periods of observed data (1980-1989 and 1980-2014)

and two testing sets of RCM data (1990-2014 and 1980-2014). RMSE for all meth-

ods varied throughout the year and was larger in cold months, while PSS was more

consistent. Quantile-mapping bias-correction techniques substantially improved PSS,

while simple linear transfer functions performed best in improving RMSE. For the

1980-1989 calibration period, simple quantile-mapping techniques outperformed em-

pirical quantile mapping (EQM) in improving PSS. When calibration and testing

time periods were equivalent, EQM resulted in the largest improvements in PSS. No

one method produced substantial improvements in both RMSE and PSS. Our results

indicate that simple quantile-mapping techniques are less prone to overfitting than

EQM and are suitable for processing future climate model output, while EQM is ideal

for bias-correcting historical climate model output.

2.2 Introduction

High-resolution (≤1km) gridded climate products with both fine spatial and tem-

poral resolutions are crucial to assessing the effects of a changing climate on social

and ecological systems at local scales [11], [118], [119]. Such products are important

for climate impact assessments [4], agricultural modeling [120], and ecological stud-

ies [11], [121]. General circulation models (GCMs) provide useful information about

larger-scale climate, but their spatial resolution (100 - 450km) is too coarse to gain

32



insight into localized responses to climate change [5], [8]. In addition, GCMs sim-

plify climate processes through parameterization schemes, resulting in the unrealistic

representation of some climate processes [7]. Consequently, output from GCMs is

characterized by a non-trivial degree of bias [7]–[9]. Typically, post-processing steps

such as downscaling and bias-correction are applied to climate model output prior to

its use in applications or other downstream models.

In the downscaling process, output generated by climate models is transformed

from a coarse to finer resolution. The two main types of downscaling are dynamical

and statistical. In dynamical downscaling, a regional climate model (RCM) is forced

by GCM or reanalysis data. An RCM simulates climate processes at a finer resolution

than forcing data by incorporating fine-scale landscape and atmospheric processes [5],

[6], [13], [14]. RCMs are computationally intensive, although they typically require

less processing power than GCMs [15], [16]. Statistical downscaling, in contrast, in-

volves establishing statistical relationships between coarse-scale and fine-scale climate

variables, often leveraging local, observed phenomena or attributes [14]. Statistical

downscaling is computationally efficient and can be applied to both precipitation and

temperature [21], [22]. In contrast to dynamical downscaling, a substantial amount of

observational data is necessary to derive statistical relationships necessary for statis-

tical downscaling [14]. In addition, statistical downscaling can result in a reduction in

the physical coherence of climate simulations [122]. Approaches for statistical down-

scaling include regression-based methods [5], principal components analysis [23], [24],

weather classification schemes, and weather generators [14]. Recently, machine learn-

ing methods such as artificial neural networks [25], deep learning [26], and random

forests [27] have been used for downscaling both temperature and precipitation vari-
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ables. Downscaling is especially important for accurate representation of temperature

in regions characterized by topographically varied terrain [10], [11].

High-resolution climate data can also be generated by applying statistical down-

scaling to RCM output [123]. While this combination of dynamical and statistical

downscaling is complex, it is an effective workflow for generating high-resolution cli-

mate data simulations as it combines physical and statistical relationships [31], [124],

[125].

Bias-correction is another post-processing procedure that can correct the mean,

variance, and higher moments of climatological variables [8], [9]. Generally, bias-

correction methods can be classified into four categories: 1) linear scaling [42], [43];

2) nonlinear scaling [44]; 3) distribution mapping [45]; and 4) empirical (distribution-

free) quantile mapping [46]–[48]. The techniques differ in their ability to correct

higher-order moments of simulated climatological variables. For bias-correcting tem-

perature variables, linear scaling and empirical quantile mapping (EQM) are often

used [22], [49]–[52]. EQM, a sophisticated technique, can correct the mean, variance,

and higher moments of temperature and precipitation variables [22], [53]. Linear

scaling is a simple technique in which the difference between monthly mean observed

and simulated data is added to simulated data. Despite its simplicity, it is effective

for bias-correcting temperature variables [42], [54]. Most bias-correction methods as-

sume stationarity of model errors over time [55], and sufficient observational data is

necessary to derive robust transfer functions.

Gridded, observational climate products [e.g. Livneh, [76]; Daymet, [77]; and

PRISM, [78]] are often used for bias-correction due to their extensive spatial and

temporal coverage. However, the interpolation algorithms used to create gridded cli-

34



mate products can introduce bias [79] and additional uncertainty when used for bias-

correcting climate model output [80]. In particular, [79] found that in the United

States, gridded observational products (including Livneh, Daymet, and PRISM) gen-

erally exhibited a negative bias for maximum daily temperature and that biases were

exacerbated in topographically complex regions. Similarly, [126] found that in the

Northeastern US, PRISM data products [78] demonstrated a cold bias for mean

monthly temperature that increased at higher elevations.

A valuable alternative to gridded observational data products are long-term, cu-

rated station data, such as data from the Global Historical Climate Network [74].

Station data represent direct climatological measurements and are available globally

[82], [83]. The use of station data, rather than gridded observational products, re-

moves uncertainty during bias-correction. Station data are often used to validate the

accuracy of bias-corrected climate model output but can also be effectual for bias-

correcting output from climate models. Methods that account for the spatial auto-

correlation of climate variables can improve the accuracy of gridded products created

from sparsely distributed station data [112]. For instance, [84] downscaled monthly

temperature and precipitation simulations from an RCM to climate stations and bias-

corrected the simulated climate variables with station data, resulting in appreciable

improvement in the accuracy of a hydrological model. [85] showed that incorporating

station data in a geostatistical downscaling and bias-correction approach resulted in

full-coverage, high-resolution monthly temperature and precipitation data that better

captured the complex topographical features of their study area. Recently, [127] con-

structed 1km gridded datasets of monthly temperature over a region in China using

a sophisticated geostatistical model, resulting in reduced uncertainty in the resulting
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datasets.

Despite the advantages of station data, its use in constructing full-coverage, bias-

corrected, downscaled climate data, especially at high spatial and temporal resolu-

tions, is limited. The density and spatial distribution of climate stations are often

irregular, especially in mountainous and high-elevation regions [78]. Another chal-

lenge is that for constructing full-coverage climate datasets, it is not sufficient to

bias-correct only at station locations, as bias-correction must be applied at locations

where stations are not present. There is a need for methods in which station data is

leveraged to create full coverage, high-resolution bias-corrected climate data.

In this study, we leverage station data to develop and compare the performance of

six downscaling and bias-correction methods for constructing high-resolution (1km),

daily gridded temperature climate products. All of the six methods are specifically

developed to address the challenge of creating full-coverage climate products using

only station data. The methods incorporate well-established interpolation and bias-

correction techniques, but the workflows of the methods are novel and unique. We

apply the methods to daily RCM simulations of 2-meter maximum air temperature

(TMAX) over a region in the northeastern United States. The relationship between

elevation and temperature (lapse rate) is important to incorporate during downscal-

ing, so we include fine-scale elevation during the downscaling process. However, in

doing so, the adjustment of temperature due to elevation is difficult to disentangle

with the adjustment due to bias-correction. For this reason, all six methods were

implemented with and without the incorporation of fine-scale elevation. We validate

the methods using two calibration time periods and apply a spatial cross-validation

prior to calculating performance metrics to ensure that the ability of the methods to

36



bias-correct in a spatially coherent manner is accounted for.

This paper aims to address the following questions:

1. How do the different bias-correction and interpolation techniques used in the

six methods affect performance, as measured by the root-mean square error

(RMSE) and Perkins skill score (PSS)?

2. Does performance among methods vary by month, and is performance among

methods improved when elevation lapse rates are used during downscaling?

3. Is any one method particularly well-suited for high-resolution downscaling and

bias-correction with respect to both RMSE and PSS?

The article is organized as follows: in section 2, we describe the study area, station

and RCM data, and downscaling and bias-correction methods. In section 2, we also

provide specific justifications for each of the six methods and describe validation of

the methods. In section 3, we present our results, and in section 4 we discuss our

results and provide conclusions and recommendations.

2.3 Methods

2.3.1 Study area and data

The study area, the Lake Champlain Basin, consists of parts of Vermont, New Hamp-

shire, eastern New York and southern Quebec, Canada (Figure 2.1). The region is

topographically varied; the Green Mountains, Adirondack Mountains, and White

Mountains span portions of Vermont, New York, and New Hampshire, respectively
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[31]. Elevations in the study area range from 30 to 1500 m above mean sea level

(MSL).

Figure 2.1: GHCND stations (n = 78) (black points) within the study area (red box).

Daily historical TMAX simulations over 1980-2014 were generated by the Ad-

vanced Weather and Research Forecasting model (WRF) version 3.9.1 [128]. WRF is

widely used as both a regional climate model and numerical weather prediction sys-

tem [128]. Initial and lateral boundary conditions were obtained from ERA-Interim,

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF).

ERA-interim has an approximate spatial resolution of 80 km [129] and was down-

scaled to 4 km using three one-way nests (36 km, 12 km, 4km) [130]. Only output
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from the inner, 4km resolution domain was used in this study. Specific physics set-

tings for WRF are shown in Supplementary Material. A total of 4387 WRF grid cells

covered the study area.

Historical daily weather station data was obtained from the Global Historical Cli-

mate Network (GHCND) (https://www.ncdc.noaa.gov/cdo-web/search?datasetid=

GHCND). GHCND data records are adjusted to account for changes in instrumen-

tation and other anomalies [74], [82]. We retained only those stations with at least

70% complete records over the historical time period 1980-2014 (73 stations). In this

study, WRF simulations were downscaled to a 1km grid; elevation estimates at each

1km grid cell were derived from a 30m digital elevation model (DEM) [131]. Elevation

values were interpolated to the 1km grid using inverse distance weighting (IDW). The

1-km resolution was chosen based on spatial resolution requirements for local climate

impact assessments [31], [132].

2.3.2 Description of downscaling and bias-correction

methods

The six downscaling and bias-correction methods described in this paper can be di-

vided into two groups: those that employ empirical quantile mapping (EQM) for

bias-correction and those that employ linear transfer regression functions for bias-

correction. Within the two groups, methods differ mainly with respect to interpola-

tion techniques (IDW, kriging) and procedures to transfer bias-correction to locations

void of stations.

Elevation has a major effect on climatological variables such as maximum temper-
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ature [31], [133]. Therefore, during downscaling, it is important to account for lapse

rates, especially in topographically rich regions, such as the Lake Champlain Basin

[31]. However, we found that when elevation was incorporated (using lapse rates)

during downscaling, it became difficult to disentangle the effects of downscaling with

those of bias-correction. Therefore, all methods were implemented with and without

the use of lapse rates or elevation covariate (depending on the interpolation method).

When elevation was not accounted for, neither lapse rates nor the inclusion of an

elevation covariate were included during interpolation of WRF data. In this study,

we will regard steps involving the interpolation of WRF to GHCND station locations

or the fine-scale grid as downscaling.

Empirical quantile mapping-based methods: EQM_krig, EQM_IDW, and

EQM_grid

One way station data can be leveraged for bias-correcting WRF simulations in loca-

tions where stations are not present is to 1) interpolate WRF simulations to station

locations, 2) bias-correct interpolated WRF simulations at station locations using

empirical quantile mapping (EQM), and 3) interpolate bias-corrected WRF simula-

tions at station locations to the fine-scale grid. This general workflow is implemented

in EQM_krig and EQM_IDW (Figure 2.2; Table 2.1). As the suffixes suggest, the

interpolation methods for EQM_krig and EQM_IDW were kriging and IDW, respec-

tively. Both kriging, a geostatistical procedure, and IDW, a deterministic one, are

common interpolation methods for downscaling [85], [134]–[137].
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Table 2.1: Summary of six bias-correction and downscaling methods.

Method Bias-correction technique Details

EQM_krig empirical quantile mapping
Bias-correction occurs at GHCND station

locations. Bias-corrected WRF is then
interpolated to the fine-scale grid using kriging.

EQM_IDW empirical quantile mapping
Bias-correction occurs at GHCND station

locations. Bias-corrected WRF is then
interpolated to the fine-scale grid using IDW.

EQM_grid empirical quantile mapping
GHCND station and WRF data are interpolated

to the fine-scale grid. Bias-correction occurs
at the fine-scale grid.

LTQM_grid_V
linear transfer function:
quantile mapping using
rank-ordered regression

Linear transfer functions are constructed at
GHCND station locations, and estimated

parameters are kriged to the fine-scale grid. Kriged
parameters are used for bias-correction at the fine-

scale grid.

LTQM_grid_C
linear transfer function:

quantile mapping using rank
ordered regression

Linear transfer functions are constructed at
GHCND station locations, and estimated

parameters are kriged to the fine-scale grid. The medians
of kriged parameters over the fine-scale grid

is calculated and used for bias-correction (parameters
are constant over the fine-scale grid)

LT_grid linear transfer function:
temporally-ordered regression

Linear transfer functions are constructed at
GHCND station locations, and estimated

parameters are kriged to the fine-scale grid. Kriged
parameters are used for bias-correction at the

fine-scale grid.

For both methods EQM_krig and EQM_IDW, daily WRF simulations were first

interpolated to GHCND station locations. For EQM_IDW, interpolation was com-

pleted using IDW with and without topographic downscaling [31]. IDW with topo-

graphic downscaling combines IDW with lapse rates to adjust for fine-scale elevation

and has been applied to high-resolution downscaling [31] (full details on topographic

downscaling and IDW are given in Supplementary Material). For brevity, we will

refer to IDW with topographic downscaling as topographic downscaling. Two param-

eters, the power, p, and number of nearest neighbor observations used in averaging,

n, control the smoothness of IDW interpolation. Higher values of p and n result in
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progressively smoother interpolated surfaces. Based on results from [31], who used a

similar study area and data, as well as our own assessment, we chose values of 2 and

9 for p and n, respectively. Elevational lapse rates were calculated using historical

GHCND TMAX data within the study region following methods in [31].

For EQM_krig, WRF simulations were interpolated with kriging. To account

for fine-scale elevation, elevation (either at station locations or at the fine-scale grid)

was included as a covariate in universal kriging models. In the case when fine-scale

elevation was not accounted for, ordinary kriging was used. IDW and kriging were im-

plemented with the gstat package [138] in R [139]. The prediction surface resulting

from kriging depends on the location of observational data as well as the strength of

spatial dependence among the data, which can be assessed with a variogram. Based

on inspection of empirical variograms of daily WRF TMAX data, all kriging models

were fit with the exponential covariance function. The effective range, partial sill, and

nugget were set to 150km, 15, and 0.2, respectively (full kriging details are described

in Supplementary Material). We compared the two interpolation techniques, kriging

and IDW, because we wanted to determine whether a geostatistical (kriging) or de-

terministic (IDW) interpolation technique would significantly influence performance.

Kriging methods often work better for interpolating sparsely distributed data [140],

[141], such as the GHCND station data, but IDW is simple, computationally efficient,

and generally better suited for interpolated densely gridded data [136]. However, any

interpolation method that incorporates relationships between temperature data and

topographic features such as elevation is likely to produce more realistic predictions

of climate variables, especially in regions of varying topography [137].

Once WRF simulations were interpolated to GHCND station locations for all
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days in the historical time period, WRF interpolations were bias-corrected at each

GHCND station location using EQM (2.1). The EQM transfer function is expressed

by the empirical cumulative distribution function (ecdf) and its inverse (ecdf−1).

Xcorr,t = ecdf−1
obs,m(ecdfraw,m(Xraw,t)). (2.1)

In (2.1), Xcorr,t is the corrected WRF TMAX value on day t, ecdf−1
obs,m is the inverse

ecdf of GHCND station data for month m, and ecdfraw,m is the ecdf of interpolated

WRF TMAX simulations at a GHCND station location for month m, and Xraw,t is the

interpolated, uncorrected WRF TMAX at a GHCND station location on day t. Thus,

daily WRF simulations in a specific month were corrected with the corresponding

monthly EQM transfer function. For example, a WRF simulated value of TMAX

in January would be corrected with the EQM transfer function for January. EQM

was implemented with the qmap package [102] in R. Finally, bias-corrected WRF

simulations at GHCND station locations were interpolated to the fine-scale grid with

the same method used to interpolate coarse-grid WRF simulations to GHCND station

locations.

Despite the simplicity of EQM_krig and EQM_IDW, much of the original WRF

data is not used, as ultimately only bias-corrected WRF simulations at GHCND

station locations are interpolated to the fine-scale grid. Another approach to trans-

ferring information from stations to other locations for bias-correcting WRF data is

to 1) interpolate both GHCND station and WRF data to the fine-scale grid and 2)

bias-correct WRF interpolated data with interpolated station data on a grid-cell by

grid-cell basis using EQM. The method EQM_grid (Figure 2.2; Table 2.1) has advan-

tages over EQM_krig and EQM_IDW, since it preserves more spatial information

43



from WRF data (i.e. the grid suffix indicates that bias correction is applied at the

fine-scale grid, rather than station level).

Figure 2.2: Workflows for the six bias-correction and downscaling methods described in this
study. In EQM_IDW, EQM_krig, and EQM_grid, bias-correction was done with empirical
quantile mapping (EQM). EQM_grid differs with respect to EQM_krig and EQM_IDW in
that bias-correction was done at the grid rather than station level. In LTQM_grid_V and
LTQM_grid_C, linear transfer (LT) functions were constructed using rank-ordered WRF
and GHCND station data. In LTQM_grid_V, interpolated LT parameters were used for
bias-correction at the fine-scale grid level, so LT parameters were allowed to vary spatially
(V = vary). In LTQM_grid_C, the median values of interpolated LT parameters at the fine-
scale grid level were calculated and subsequently used for bias-correction, so LT parameters
were constant over the fine-scale grid (C = constant). Interpolated parameters were also
allowed to vary spatially over the fine-scale grid for method LT_grid, but LT functions were
constructed using temporally-ordered, rather than rank-ordered, data.

In method EQM_grid, WRF simulations and GHCND station data were interpo-

lated to the fine-scale grid. WRF and GHCND data were interpolated with IDW and

kriging, respectively. Kriging, rather than IDW, was used for GHCND station data,

as it is generally better for interpolating sparsely distributed data [140]. The covari-
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ance function and covariance parameters were identical to those used in EQM_krig.

When elevation was accounted for, interpolation of WRF simulations was done via

topographic downscaling. Interpolation of GHCND station data was done with uni-

versal kriging, which included an elevation covariate. Finally, after WRF simulations

and GHCND station data were interpolated to the fine-scale grid, WRF interpola-

tions were bias-corrected with kriged GHCND station data grid-cell by grid-cell using

EQM (2.1).

Linear transfer function-based methods: quantile mapping and linear re-

gression (LTQM_grid_C, LTQM_grid_V, LT_grid)

The linear transfer (LT) family of methods presents an alternative way to transfer

information needed to bias-correct WRF simulations at any location on the fine-scale

grid. In methods LT_grid, LTQM_grid_V, and LTQM_grid_C, bias-correction is

done by applying LT functions derived from regression relationships between GHCND

station data and WRF simulations (Figure 2.2; Table 2.1). In these methods, simple

regression parameters (slopes and intercepts) are estimated at GHCND station loca-

tions and interpolated to locations on the fine-scale grid where bias-correction is to be

performed. Thus, LT methods provide an alternative to the EQM methods (EQM_-

grid, EQM_krig, and EQM_IDW), as estimated parameters, rather than either bias-

corrected data (EQM_krig, EQM_IDW) or GHCND station data (EQM_grid) are

interpolated to the fine-scale grid and subsequently used to bias-correct WRF data

at the grid level.

The main difference between both LTQM methods (LTQM_grid_V and LTQM_-

grid_C) and LT_grid is the ordering of the data used to construct the simple regres-
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sions, which ultimately impacts the type of correction applied to WRF simulations.

Two types of data ordering were considered: 1) temporally-ordered (calendar order)

(LT_grid) and 2) rank-ordered (sorted from least to greatest) (LTQM_grid_V and

LTQM_grid_C). In both cases 1) and 2), GHCND station data was expressed as a

linear function of WRF data, and regression parameters (slope and intercept) were

estimated via ordinary least squares (OLS). In the context of this study, resulting

regression equations are applied to raw WRF data to complete the bias-correction.

The intercept adjusts the mean, while the slope scales the variance. Thus, since the

regression equation is linear in form, the transfer function is linear.

If OLS assumptions are met, then by definition, OLS estimates are BLUE (best

linear unbiased estimators) [142], and the regression line is the only such line that

minimizes the mean square error. It follows that for case 1), in which WRF and

GHCND station data are temporally-ordered (LT_grid), the LT function is guaran-

teed to improve daily discrepancies between WRF and GHCND station data (RMSE).

However, the approach is not guaranteed to improve distributional discrepancies to

the same degree. For case 2), in which data are rank-ordered (LTQM_grid_V and

LTQM_grid_C), the LT function acts as a simple type of quantile mapping and will

thus improve distributional similarity (and PSS) between WRF and GHCND station

data. However, RMSE is not guaranteed to improve. Since both LTQM_grid_C

and LTQM_grid_V bias-correct via a simple quantile-mapping technique, the “QM”

in LTQM_grid_V and LTQM_grid_C refers to “Quantile Mapping”. The subtle

difference between LTQM_grid_V and LTQM_grid_C will be discussed later.

While using rank-ordered data results in a simple form of quantile mapping, the

quantile map between WRF and GHCND station data is modeled with a linear re-
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gression line. EQM is more flexible, as first, quantiles of observed and station data are

estimated, and then the quantile map is approximated via linear or spline interpola-

tion [102]. It is important to note that if OLS assumptions (linearity, homoscedasticity

of residual errors, and independence of observations) are not met, the OLS estimates

are no longer BLUE.

The first step for methods LT_grid, LTQM_grid_V, and LTQM_grid_C was

identical: daily WRF simulations were interpolated to the fine-scale grid using IDW

(or topographic downscaling). Daily WRF simulations were also interpolated to

GHCND station locations, where LT functions were formulated (2.2).

For all three methods (LTQM_grid_C, LTQM_grid_V, LT_grid), LT functions

were constructed by regressing large-scale predictor variables (WRF data) on small-

scale predictands (GHCND station data) at each GHCND station location. Separate

LT functions were constructed for each month. The estimated regression parameters

at each GHCND station location (slope and intercept coefficients) were kriged to the

fine-scale grid, and interpolated WRF simulations on the fine-scale grid were bias-

corrected with the corresponding kriged regression parameters grid-cell by grid-cell.

Therefore, the term “grid” in all three methods refers to bias-correction taking place

at the fine-scale grid center points, rather than station locations.

The LT function for LT_grid was a simple linear regression in which WRF in-

terpolations at GHCND stations were predictor variables, and GHCND station data

were the predictands (2.2). Data were sorted in temporal order. Twelve LT functions

(one for each month) were constructed at each GHCND station location (2.2).

TMAXstation,i,m = β0,i,m + β1,i,m × WRFIDW,i,m (2.2)
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In (2.2), TMAXstation,i,m is daily TMAX for GHCND station location i in month m,

β0,i,m is the intercept for GHCND station location i in month m, β1,i,m is the slope for

GHCND station location i in month m, and WRFIDW,i,m represents daily interpolated

WRF values at GHCND station location i in month m. Monthly parameter estimates

of slopes and intercepts at each GHCND station location were kriged to the fine-scale

grid with ordinary Bayesian kriging.

Empirical variograms of estimated monthly slope and intercept parameters showed

some degree of spatial autocorrelation, although the association was stronger in cold-

season compared to warm-season months. The exponential covariance function was

used for all Bayesian kriging models. Based on the inspection of empirical variograms,

we used non-informative prior distributions for the intercept (β0), partial sill (σ2), and

nugget (τ 2), and an informative prior for the effective range (ϕ).

β0 ∼ N(0, 100)

ϕ ∼ Unif( 3
Dmax

,
3
10)

σ2 ∼ InvGamma(2, 2)

τ 2 ∼ InvGamma(2, 0.02).

Dmax was the maximum distance between any two GHCND station locations (full

details on Bayesian modeling are described in Supplementary Material, section 1).

Bayesian kriging is preferable to non-Bayesian kriging when data is sparse, and there

is some degree of uncertainty surrounding estimates of covariance function parameters

[143]. Finally, interpolated WRF simulations on the fine-scale grid were bias-corrected

grid-cell by grid-cell, using the corresponding kriged slope and intercept parameter
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estimates (2.3):

TMAX∗
i,m = β̃0,i,m + β̃1,i,m × WRF1km−interp,i,m. (2.3)

In (2.3), TMAX∗
i,m is the bias-corrected, fine-scale WRF value for grid cell i in

month m, β̃0,i,m is the kriged prediction for the intercept of grid cell i in month

m, β̃1,i,m is the kriged slope parameter estimate at fine-scale grid cell i in month m,

and WRF1km−interp,i,m is the interpolated WRF value at the center of fine-scale grid

cell i in month m.

For methods LTQM_grid_V and LTQM_grid_C, LT functions were constructed

using rank-ordered WRF and GHCND station data. In these LT functions, the

nearest WRF grid-cell values to GHCND station locations were predictor variables

and GHCND station data were predictands, similar to the approach of [144], who

applied rank-ordered regression to bias-correct temperature and precipitation simu-

lations. [144] found that modeling empirical quantiles of RCM and observed mean

temperature data with a simple linear regression worked well if the quantile map

between simulated and observed data was linear in form. Twelve LT functions were

constructed at each GHCND station location (2.4).

TMAXi,m = β0,i,m + β1,i,m × WRFNNi,m
. (2.4)

In (2.4), TMAXi,m is daily TMAX at GHCND station location i in month k, β0,i,m

is the intercept for GHCND station location i in month m , WRFNNi,m
are the one-

nearest-neighbor grid cell WRF simulations relative to GHCND station location i in

month m, and β1,i,m is the coefficient for station location i in month m.
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There was one important difference between methods LTQM_grid_V and LTQM_-

grid_C. In method LTQM_grid_V, monthly estimates of intercepts and slopes were

kriged to the fine-scale grid with ordinary Bayesian kriging using the same priors as

in LT_grid. Then, the kriged slopes and intercepts were used to bias-correct interpo-

lated WRF data on the fine-scale grid (2.3). In method LTQM_grid_C, however, the

monthly medians of kriged slopes and intercepts over the fine-scale grid were used to

bias-correct interpolated WRF data (2.3). In LTQM_grid_V, the kriged slopes and

intercepts used to bias-correct WRF interpolations varied over the fine-scale grid (V

for vary). In contrast to LTQM_grid_V, spatially constant (C for constant) slope

and intercept values were used for bias-correction in LTQM_grid_C. We implemented

variations in which estimated slopes and intercepts varied spatially (LTQM_grid_V)

and in which they were spatially constant (LTQM_grid_C), because monthly kriged

surfaces of estimated slopes and intercepts over the fine-scale grid were not always

spatially smooth. A rougher parameter surface could potentially result spatially in-

coherent corrections in some locations. Using constant monthly medians of kriged

slope and intercept estimates alleviates issues related to a rough kriging surface but

sacrifices flexibility in that any spatial dependence among is no longer accounted for.

2.3.3 Performance measures and validation

Performance measures

Bias-corrected WRF simulations should exhibit day-to-day, as well as distributional,

correspondence to GHCND station data. Thus, we chose root-mean-square predic-

tion error (RMSE) and Perkins skill score (PSS) [145] as performance metrics which
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1) quantify daily discrepancies and 2) distributional similarity between WRF and

GHCND station data, respectively. PSS ranges between 0 and 1, where 1 indicates a

perfect distributional overlap between simulated and observed data, and 0 indicates

no distributional overlap [145]. PSS is calculated by summing minimum densities of

overlapping bins of discrete histograms of simulated and observed data. PSS is not

highly influenced by outliers, but it is sensitive to bin size [145]. However, larger

daily discrepancies between simulated and observed data have a comparatively larger

influence on RMSE, due to the squared term in its calculation. Both PSS and RMSE

metrics are widely in the climate literature for validation [31], [34], [85], [127], [145]–

[147].

To fairly assess the ability of the six methods to bias-correct WRF simulations

at locations where stations are not present, we implemented a five-fold spatial cross-

validation prior to calculating performance metrics. In each fold, 1) bias-correction

was based on approximately 70% of GHCND stations and 2) bias-correction was

applied to WRF interpolations at the remaining 30% of GHCND station locations.

Because all of the six methods had slightly different workflows, the five-fold spatial

cross-validation was adjusted for each method to ensure that results were comparable.

For EQM_krig and EQM_IDW methods, the cross-validation was performed as

follows for each of the i = 1...k, k = 5, folds: for fold i, bias-corrected WRF inter-

polations at GHCND station locations in fold k ̸= i were used as training data and

were interpolated (via kriging or IDW) to GHCND station locations in fold i.

For EQM_grid, TMAX values at GHCND station locations in the k ̸= i fold

were used as training data and were interpolated using ordinary kriging to station

locations in fold i. Then, interpolated WRF data at GHCND station locations in the
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ith were bias-corrected using kriged GHCND station values. This was repeated for

the i = 1...k, k = 5 folds.

For LT_grid, LTQM_grid_V, and LTQM_grid_C methods, LT functions (2.2

and 2.4) were constructed at GHCND station locations in folds k ̸= i; Bayesian

kriging was used to krig estimated LT parameters (slopes and intercepts) to GHCND

station locations in fold i. Interpolated WRF values at GHCND station locations

in the ith fold were bias-corrected with kriged estimated LT parameters. This was

repeated for the i = 1...k, k = 5 folds.

Like all cross-validation approaches, GHCND stations in each of the five folds

were randomly selected prior to spatial cross-validation; thus, for each method, the

stations in folds k = 1 . . . 5 were the same to ensure that results would be comparable.

Spatially cross-validated, daily RMSE values were calculated by method and

month using the following formula:

Ek(Y ) =
√√√√ 1

nk

∑
i ∈ kth fold

(Y (sj − Ŷ (sj)2)

RMSE = 1
K

K∑
k=1

Ek(Y ),

where Y (sj) is the TMAX value at GHCND station sj, Ŷ (sj)2 is the bias-corrected

WRF TMAX value at GHCND station location sj, nk is the number of observations

in fold k and K = 5.

To calculate PSS, discrete probability density functions (PDFs) were constructed

for bias-corrected WRF and GHCND station data using bin widths of 0.5◦C as rec-

ommended by [145]. Spatially cross-validated PSS was calculated by method and

52



month using the following formula:

Ek(PSS) =
bk∑
i

min(Zi, Z∗
i )

PSSm = 1
K

K∑
k=1

Ek(PSS),

where Zi is the normalized density of the PDF of GHCND station data in bin i, Z∗
i

is the normalized density of the PDF of bias-corrected WRF data in bin i, and bk is

the number of bins used to construct the PDFs of GHCND station and bias-corrected

WRF data in fold k, and K = 5.

2.3.4 Validation

We validated the six methods using two calibration time periods. Bias-correction was

applied to 1) 1980-2014 WRF simulations using 1980-2014 GHCND station data and

2) 1990-2014 WRF simulations using 1980-1989 GHCND station data. The former

approach helps evaluate performance of methods for processing historical simulations,

while the latter approach assesses potential performance of methods for processing

future projections. For clarity, we name these cases by referring to the subset of

GHCND station data that are used for bias-correction (e.g. "1980-2014" and "1980-

1989").
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2.3.5 Analysis of performance metrics

Performance metrics of the six methods were analyzed with two linear analysis of

variance (ANOVA) models (one for RMSE and one for PSS). Our observations show

that raw WRF interpolations at GHCND station locations exhibit a distinct cold bias

in winter and early spring compared to summer and early fall months (Figure 2.3), so

we controlled for monthly variation in the two ANOVA models. We also controlled

for whether or not elevation was accounted for in downscaling to help disentangle the

effects of downscaling with those of bias-correction. Finally, we controlled for the cal-

ibration time period (1980-1989 or 1980-2014) used to bias-correct WRF simulations.

We used linear ANOVA models to evaluate performance among methods, as they

are easy to interpret and provide information on how PSS and RMSE differ among

methods while controlling for variables. With the incorporation of interaction effects,

linear ANOVA models can also help expand knowledge of more complex relationships

among performance metrics, the six methods, and controlling variables (described

below).

54



Figure 2.3: Monthly average TMAX (◦C) of WRF interpolations at GHCND locations and
GHCND station data from 1980-2014 showing a distinct cold bias in the WRF simulations
for the winter and early spring months (month 1-5 and 11-12).

Prior to ANOVA model fitting, spatially cross-validated RMSE and PSS were

averaged over the six methods and months. Full models for PSS and RMSE were fit

with the following four fixed effects:

• Method: identifier for the downscaling and bias-correction method (EQM_krig,

EQM_IDW, EQM_grid, LT_grid, LTQM_grid_V, and LTQM_grid_C)

• Month: month of the year (1-12)

• Elevation: binary variable to denote whether the effect of elevation was included

with the use of elevational lapse rates (“YES”) or not (“NO”)

• Bias_correction_years: binary variable to denote if 1990-2014 WRF simula-

tions were bias corrected with 1980-1989 GHCND station calibration dataset
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("1980-1989") or whether 1980-2014 WRF simulations were bias-corrected with

the 1980-2014 GHCND station calibration dataset ("1980-2014").

In addition, the initial full model fits included reasonable and informed two- and three-

way interactions: Month × Method, Elevation × Method × Bias_correction_years,

Elevation × Method, Elevation × Bias_correction_years, Bias_correction_years ×

Method, and Method × Bias_correction_years × Elevation. After full ANOVA mod-

els were fit, all variables with a p-value < 0.05 were eliminated, and both ANOVA

models were fit again with remaining variables. After fitting final ANOVA models,

pairwise comparisons, as well as estimated marginal means (necessary for interac-

tion plots) were calculated with the R package emmeans [148]. Pairwise comparisons

were carried out with the Bonferroni correction for multiple comparisons. We also

calculated η2 for all effects in the final models for PSS and RMSE. η2 quantifies

the proportion of variance associated with main effects and interactions in a linear

model and is a useful indicator of effect size and strength of association in linear

models [149], [150]. Values for η2 range between 0 and 1, where higher values indicate

greater variable importance. η2 is calculated as the sum of squares of an independent

variable (SSbetween) divided by the total sum of squares (TSS) of the model:

η2 = SSbetween/TSS.
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2.4 Results

2.4.1 Overall performance

Raw WRF interpolations at GHCND station locations exhibited a cold bias, which

was most pronounced in months 11 and 12 and 1-4 (Figure 2.3). Generally, the average

day-to-day correspondence between GHCND station data and bias-corrected WRF

data, as measured by mean RMSE, varied little among methods, ranging between

3.1-3.5 (Figure 2.4 a). Distributional similarity between GHCND station data and

bias-corrected WRF data, measured by PSS, ranged between 0.94-0.96 (Figure 2.4 b).

All methods performed better than uncorrected WRF: RMSE of uncorrected WRF

interpolations at GHCND station locations ranged between 3.6 and 3.9, while mean

PSS ranged between 0.90 and 0.91 (Figures 2.4 a and b).

Performance metrics for all methods exhibited monthly variation: both mean

monthly RMSE and PSS were worse in months 11, 12, and 1-4 compared to months

5-10 (Figures 2.5 a and b), although monthly variation was much more pronounced for

RMSE than PSS. Overall, methods LT_grid and LTQM_grid_V performed best and

worst, respectively, in terms of mean RMSE (Figure 2.4 a), while methods EQM_grid

and LTQM_grid_V performed best and worst, respectively in terms of mean PSS

(Figure 2.4 b).

Mean RMSE and PSS improved when bias-correction was based on 1980-2014

GHCND station data (and the correction was applied to 1980-2014 WRF data) com-

pared to when bias-correction was based on 1980-1989 GHCND station data (and

the correction was applied to 1990-2014 WRF simulations) (Figures 2.4 a and b, re-
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spectively). Generally, when elevation was accounted for during downscaling (with

lapse rates), mean RMSE decreased (Figure 2.4 a), but Elevation did not have an

appreciable impact on mean PSS (Figure 2.4 b). There was no consistent relationship

between low RMSE and high PSS. An example of a downscaled, bias-corrected data

product for one particular day is shown in Figure 2.6 (only one example is shown,

as downscaled, bias-corrected data for all methods were ocularly indistinguishable).

Figure 2.6 clearly shows that the downscaled, bias-corrected data captures the fine-

scale topographical variation of TMAX over the study region, and is a much more

realistic compared to raw WRF.
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Figure 2.4: Mean RMSE (◦C) (a) and PSS (b) by Method and Bias_correction_years,
where "1980-1989" and "1980-2014" refer to GHCND station datasets used to bias-correct
1990-2014 and 1980-2014 WRF simulations, respectively. Error bars represent standard
errors over five spatial cross-validation folds. “WRF_interp” denotes the raw WRF sim-
ulations interpolated to station locations and are shown as a comparison to bias-corrected
WRF data.
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Figure 2.5: Mean RMSE (◦C) (a) and PSS (b) by Method, Month and Bias_correction_-
years, where "1980-1989" and "1980-2014" refer to GHCND station datasets used to bias-
correct 1990-2014 and 1980-2014 WRF simulations, respectively. Error bars represent stan-
dard errors over five spatial cross-validation folds. “WRF_interp” denotes raw WRF sim-
ulations interpolated to station locations and are shown to indicate relative improvement of
all methods over raw WRF interpolated values.
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Figure 2.6: Original WRF simulations for TMAX (◦C) and downscaled WRF TMAX (◦C)
using method EQM_IDW for August 5, 1982.

2.4.2 Statistical analysis of error metrics

The final ANOVA model for RMSE included the main effects Month, Bias_correc-

tion_years, Elevation, and Method as well as the interactions Month × Method,

Method × Bias_correction_years, and Method × Elevation. P-values for all vari-

ables in the final RMSE ANOVA model were less than 10−5 (Table 2.4; See Appendix,

Table 2.6 for the full ANOVA table). The final model for PSS included the main ef-

fects Month, Method, and Bias_correction_years and the interaction terms Month ×

Method and Method × Bias_correction_years. P-values for all variables in the final

PSS ANOVA model were less than 10−5 (Table 2.5, see Appendix, Table 2.7 for the

full model ANOVA). In contrast to results for RMSE, the effect of Elevation was not

significant in the full model for PSS (p = 0.857; Appendix, Table 2.7).
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Due to the significance of interaction as well as main effects, main effects are

discussed in the context of interaction effects. Results for pairwise comparisons for

interaction terms present in RMSE and PSS ANOVA models, as well as an alternative

metric to PSS for quantifying distributional similarity, are shown in Supplementary

Material.

Table 2.2: η2 for the final RMSE ANOVA model

Predictor η2

Month 0.94
Month× Method 0.014

Elevation 0.013
Method 0.0092

Bias_correction_years 0.0063
Bias_correction_years × Method 0.0018

Elevation × Method 0.00069

Table 2.3: η2 for the final PSS ANOVA model.

Predictor η2

Method 0.43
Month × Method 0.28

Bias_correction_years 0.14
Month 0.11

Bias_correction_years × Method 0.09

Month, Method, and Month × Method

RMSE η2 for Month was 0.94, whereas η2 for Month × Method and Method were

0.014 and 0.0092, respectively (Table 2.2). The large η2 for Month indicates that

Month was the most important variable in the model despite the statistical signif-

icance of the interaction Month × Method. Thus, RMSE varied substantially by

month. Indeed, the monthly pattern of RMSE was consistent for all methods (Figure
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2.7 a). The interaction plot for Month × Method shows that mean marginal RMSE

of all methods was greater (3.2-4.2◦C) in months 1-4, 11, and 12 compared to months

5-10 (2.5-3◦C) (Figure 2.7 a). Overall, mean marginal RMSE of LT_grid was lower

than that of all other methods and was significantly lower during months 2-6, 11, and

12.

PSS In contrast, for the PSS ANOVA model, the influence of Method (η2 = 0.43)

was greater than that of Month×Method (η2 = 0.28) and Month (η2 = 0.11) (Table

2.3). This means that PSS varied more among the six methods than among months

(Figure 2.7 b). Mean marginal PSS for EQM_IDW, EQM_krig, and EQM_grid

varied between 0.92 and 0.95, regardless of month (Figure 2.7 b). However, mean

marginal PSS for LTQM_grid_C and LTQM_grid_V ranged between 0.88 and 0.90

in months 1-4 and then increased to between 0.94 and 0.96 in months 5-12 (Figure 2.7

b). Mean marginal PSS for LT_grid followed a similar pattern as LTQM_grid_V

and LTQM_grid_C for months 1-4; however in months 5-10, mean marginal PSS

for LT_grid was significantly lower than that of all other methods for every month,

ranging between 0.90 and 0.91.
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Figure 2.7: Interaction plots for Method × Month showing estimated mean marginal RMSE
(a) and PSS (b) for each month. Error bars represent 95% confidence intervals.
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Bias_correction_years and Bias_correction_years × Method

RMSE In the RMSE ANOVA model, η2 values for Bias_correction_years × Method

and Bias_correction_years (η2 = 0.0018 and 0.0063, respectively) indicate that the

main effect of Bias_correction_years was slightly more important than Bias_correc-

tion_years × Method. Overall, mean marginal RMSE slightly improved when bias-

correction was based on 1980-2014 GHCND station data (3.15-3.25◦C) compared to

the 1980-1989 GHCND subset (3.18 and 3.57◦C), although there were slight differ-

ences among methods (Figure 2.8 a). The improvement was more pronounced for

the EQM-based methods than for the LT-based methods. Mean marginal RMSE of

LT_grid was significantly lower (3.18◦C) than that of all other methods (3.3-3.56◦C)

when bias-correction was based on the 1980-1989 GHCND dataset (Figure 2.8 a).

When bias-correction was done with the 1980-2014 GHCND dataset, mean marginal

RMSE of LT_grid was lowest overall, but it did not differ significantly from that of

EQM_grid. Mean marginal RMSE of LTQM_grid_V was significantly greater than

that of all other methods. Finally, it is important to note that η2 values for Bias_-

correction_years and Bias_correction_years × Method were much smaller compared

to that of η2 of Month, which means that Month was relatively more important than

Bias_correction_years and Bias_correction_years × Method.

PSS Mean PSS generally increased when the 1980-2014, as compared to the 1980-

1989 GHCND dataset, was used for bias-correction, but the amount of increase

varied among methods. Use of the 1980-2014 GHCND dataset for bias-correction

set resulted in a consistent improvement in PSS for all EQM-based methods. The

interaction Bias_correction_years × Method was particularly evident for methods
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LTQM_grid_C and LTQM_grid_V. Mean marginal PSS for both LTQM_grid_C

and LTQM_grid_V were significantly higher than that of all other methods when

the 1980-1989 GHCND dataset was used for bias-correction (Figure 2.8 b). However,

when the 1980-2014 GHCND dataset was used for bias-correction, mean marginal

PSS of LTQM_grid_C and LTQM_grid_V fell significantly below that of EQM-

based methods. In contrast to results for RMSE, LT_grid performed worst overall.

Mean marginal PSS of LT_grid was significantly lower than that of all other methods,

regardless of which GHCND dataset was used for bias-correction (Figure 2.8 b). The

main effect Bias_correction_years and interaction Bias_correction_years×Method

(η2 = 0.09 and 0.14, respectively) were comparatively less influential in the model

than the effects Method and Month × Method (η2 = 0.43 and 0.28, respectively)

(Table 2.3).

66



Figure 2.8: Interaction plots for Method × Bias_correction_years ("1980-1989" and "1980-
2014" refer to GHCND station datasets used to bias-correct 1990-2014 and 1980-2014 WRF
simulations, respectively). Plots show estimated mean marginal RMSE (a) and PSS (b) for
the 1980-1989 and 1980-2014 calibration time periods. Error bars represent 95% confidence
intervals.

67



Elevation

RMSE Generally, RMSE improved when fine-scale elevation was accounted for

during the downscaling process (Figure 2.9 a). η2 for Elevation was nearly 19 times

larger than that of Elevation × Method (η2 = 0.013 and 0.00069, respectively; Table

2.2), indicating that the main effect of Elevation was more important in the RMSE

ANOVA model than the interaction term. The relative importance of Elevation in the

model was similar to the interaction Month × Method (η2 = 0.014). Mean marginal

RMSE of LT_grid was significantly less than, and mean marginal RMSE of LTQM_-

grid_V was significantly greater than that of all other methods, regardless of whether

elevation was accounted for or not.

PSS The effect of Elevation was not significant in the full model for PSS (Table

2.7), and Elevation did not have any appreciable effect on PSS (Figure 2.9 b).

68



Figure 2.9: Interaction plots showing estimated mean marginal (a) RMSE and (b) PSS for
Method × Elevation. Error bars represent 95% confidence intervals.
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Table 2.4: Summary table for the final RMSE ANOVA model

Degrees of freedom Sum Squares Mean Square F value Pr(>F)
Month 11 84.43 7.68 1485.08 0.0000
Bias_correction_years 1 0.57 0.57 109.68 0.0000
Elevation 1 1.14 1.14 219.73 0.0000
Method 5 0.82 0.16 31.74 0.0000
Month × Method 55 1.28 0.02 4.51 0.0000
Method × Bias_correction_years 5 0.16 0.03 6.18 0.0000
Method × Elevation 5 0.06 0.01 2.40 0.0388
Residuals 204 1.05 0.01

Table 2.5: Summary table for the final PSS ANOVA model

Degrees of freedom Sum Squares Mean Square F value Pr(>F)
Month 11 0.02 0.00 18.58 0.0000
Method 5 0.05 0.01 95.13 0.0000
Bias_correction_years 1 0.03 0.03 253.94 0.0000
Month × Method 55 0.06 0.00 9.48 0.0000
Method × Bias_correction_years 5 0.02 0.00 34.42 0.0000
Residuals 210 0.02 0.00

2.5 Discussion

In this study, we developed six novel strategies for constructing high-resolution, bias-

corrected gridded climate products of daily historical TMAX simulations from a re-

gional climate model, where all bias-correction was based solely on station data. The

six methods we present result in a substantial improvement over raw WRF simula-

tions, are straightforward to implement, and can be applied to historical simulations

as well as future projections of temperature variables. We found that no one method

could concomitantly minimize RMSE and maximize PSS, which highlights the dif-

ficulty in correcting both the overall distributional discrepancies as well day-to-day

discrepancies between simulated and observed data. Although performances were

similar, the methods differ considerably in their ability to correct overall distribu-

tional discrepancies and day-to-day discrepancies between simulated and observed

data. This is due mainly to the type of bias-correction, rather than the spatial
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interpolation technique implemented in the methods. Distributional similarity, as

measured by PSS, is achieved by matching the quantile-mapping techniques such

as EQM. However, enhancing day-to-day correspondence, as measured by RMSE, is

accomplished most effectively through a linear transfer (LT) function obtained by

temporally-ordered linear regression between simulated and observed data. The most

effective method thus depends on what is deemed most important in a particular

application, day-to-day correspondence or distributional similarity, of simulated and

observed data. Performance is further affected by seasonal bias of raw WRF simu-

lations, the calibration period used for bias-correction, and the inclusion of elevation

information during the downscaling step.

2.5.1 Monthly variation in performance

Our results show that performance of the six methods is affected by seasonal bias of

WRF simulations. Raw WRF simulations for TMAX exhibited a distinct cold bias

in winter and early spring and a slight warm bias in summer compared to GHCND

station data. [130] compared TMAX simulations resulting from several parameteriza-

tions of WRF to Daymet gridded TMAX data and found that all parameterizations

resulted in an annual cold bias during cold-season (months 11-5). The underestima-

tion of mean temperature between months 11 and 5 is mainly due to the radiation

scheme [130], and the best parameterization is reflected in the WRF data used for

this study. [151] found that WRF run with a similar radiation scheme as used in this

study overestimated the albedo of snow over the Tibetan Plateau, which is consistent

with the winter cold bias in WRF simulations over the Lake Champlain Basin. As

a result of the cold bias, performance in terms of both RMSE and to a lesser de-
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gree, PSS declined in cold season months. Ideally, bias-correction techniques should

improve both RMSE and PSS despite pronounced seasonal bias in raw WRF data.

PSS

Although raw WRF simulations exhibited considerable seasonal bias, EQM-based

methods consistently improved PSS. However, for methods LT_grid_C and LT_-

grid_V, in which bias-correction was done with a simple quantile-mapping LT func-

tion, monthly PSS varied substantially throughout the year, and compared to PSS

of EQM-based methods, was especially low in months 1-4. Rank-ordered regres-

sion (LTQM_grid_C and LTQM_grid_V) is a quantile-mapping technique similar

in functionality to EQM. However, the resulting LT function (an estimated regression

line) has limitations when the quantile-quantile map of simulated and observed data

is nonlinear, as in our study. In cold season months, the quantile-quantile map of

WRF and GHCND station data was nonlinear, especially in the tails, while during

warmer months, it was relatively linear (Figure 2.10). The nonlinear quantile-quantile

map of cold-season months contributed to the poor performance of LTQM_grid_C

and LTQM_grid_V in improving PSS. This result supports findings by [144], who

also found that a rank-ordered regression approach could not adequately correct sea-

sonal biases of simulated data when quantile-quantile maps between observed and

simulated data were nonlinear.
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Figure 2.10: Quantile-quantile maps of GHCND station and WRF TMAX at a sample
GHCND station location for (a) September and (b) February. One hundred estimated quan-
tiles derived from 1980-2014 data are shown.

However, nonlinear quantile-quantile maps can be successfully approximated in

most implementations of EQM through linear interpolation, splines, or other smooth-

ing techniques [102]. Accordingly, we found that EQM-based methods substantially

outperformed rank-ordered regression-based methods, LTQM_grid_C and LTQM_-

grid_V, in months ∼11-4. Ranked-ordered regression, in contrast to EQM, can only

correct the first and second moments of a distribution, also contributing to the poor

performance of LTQM_grid_C and LTQM_grid_V in months 11-4.

We did not find appreciable differences in the performance between the two sim-

ple quantile-mapping-based methods, LTQM_grid_C and LTQM_grid_V, despite

the fact that LT parameter estimates varied over the fine-scale grid in LTQM_-

grid_V, whereas in LTQM_grid_C, LT parameter estimates were spatially constant.

Although inspection of empirical variograms of estimated regression parameters sug-
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gested some degree of spatial autorocorrelation, the amount of autocorrelation was

likely not sufficient to produce a measurable difference in results. In our study, krig-

ing LT parameter estimates over the fine-scale grid had no noticeable advantage over

the use of spatially constant LT parameter estimates.

RMSE

The bias-correction techniques implemented in the six methods generally reduced

RMSE compared to raw WRF simulations, but in contrast to PSS, bias-corrected

WRF data RMSE from all methods exhibited a strong seasonal pattern. Quantile-

mapping techniques (e.g. EQM and rank-ordered regression) perform well in correct-

ing distributional discrepancies between simulated and observed data. However, the

temporal ordering of data is not preserved in quantile-mapping techniques, which has

a negative impact on the improvement of day-to-day discrepancies (RMSE). This has

also been noted in other studies. For example, [152] found that quantile-mapping

bias-correction techniques resulted in the greatest rank-ordered correlation (highest

PSS) between simulated and observed data but did not appreciably improve RMSE.

Bias-correction techniques that preserve the temporal order of data, such as that

implemented in LT_grid, outperformed quantile-mapping techniques in reducing day-

to-day discrepancies. However, even after correction with a temporally ordered re-

gression, seasonal patterns in RMSE persisted. In LT_grid, the transfer function was

derived by fitting a (temporally-ordered) linear regression. Due to the strong cold bias

in raw WRF data in cold-season months, the daily discrepancy between WRF and

GHCND station data was, on average, larger during cold-season months compared to

warm-season months. Therefore, regression lines fit in cold-season months were char-

74



acterized by a relatively large residual standard error. Consequently, the resulting LT

function was not as effective in reducing RMSE, and seasonal patterns in RMSE per-

sisted after bias-correction. If raw simulated data exhibit pronounced seasonal bias,

substantial improvements in RMSE are difficult to achieve. Of all the bias-correction

techniques evaluated in this study, temporally-ordered linear regression (LT grid),

was most effective at reducing day-to-day discrepancies (RMSE) between simulated

and observed data.

2.5.2 Implications for future and historical down-

scaling

To gain further insight into the suitability of methods for future or historical bias-

correction, we used 1) 1980-1989 GHCND station data to bias-correct 1990-2014

WRF simulations and 2) 1980-2014 GHCND station data to bias-correct 1980-2014

WRF simulations. The 1980-2014 WRF simulations bias-corrected with 1980-2014

GHCND station data generally exhibited improved PSS and RMSE compared to

1990-2014 WRF simulations that were bias-corrected with the 1980-1989 GHCND

subset.

With respect to distributional similarity (PSS), EQM outperformed rank-ordered

regression when the 1980-2014 GHCND dataset was used for bias-correction, while the

converse was true when the 1980-1989 GHCND dataset was used for bias-correction.

The bias-variance trade-off, a well-known concept in statistical learning [153], can

help to explain this result. Simple statistical models with few parameters, such

as temporally- and rank-ordered linear regression, have high bias but low variance.
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Highly flexible techniques, that require estimation of more parameters, such as EQM,

have low bias but high variance [153]. Highly flexible models result in low training

errors, as they can fit training data very well. However, they are also more prone to

overfitting on training data, making them less able to generalize to new data [153].

The EQM transfer function will result in a nearly perfect quantile mapping if observa-

tional and simulated data of the same time period are used in its construction. When

the quantile-mapping transfer function is subsequently used to bias-correct simulated

data from the same time period, the correction will adjust simulated quantiles to very

closely match those of observed quantiles. This explains why EQM performed very

well when bias-correction was based on the 1980-2014 GHCND station dataset and

the correction was also applied to 1980-2014 WRF data.

However, when bias-correction was based on the 1980-1989 GHCND dataset, and

the correction was applied to 1990-2014 WRF data, EQM-based methods did not

perform as well in terms of correcting distributional similarity (PSS). This indicates

some degree of overfitting and lack of robustness of EQM for bias-correcting future

projections. Our results agree with [45] and [144], who found that as the calibration

time period increased, so did the risk of overfitting EQM transfer functions. Bias-

correction via rank-ordered regression (implemented in LTQM_grid_V and LTQM_-

grid_C) resulted in a higher PSS compared to EQM when the 1980-1989 GHCND

dataset was used to correct 1990-2014 WRF simulations. Rank-ordered regression is

less prone to overfitting, which means the resulting transfer function is better able to

generalize to bias-correcting future projections.

In the context of this study, relatively simple bias-correction techniques (rank-

ordered regression) may be better suited to bias-correct future projections. Flexible
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techniques such as EQM work well when the transfer function is applied to simulated

data from the same time period that was used to construct it. Our results support

studies in which simple methods such as linear scaling [54], rank-ordered regression

[144], and multiple linear regression [154] performed as well as more sophisticated

techniques for bias-correcting future temperature projections.

In terms of improving day-to-day correspondence, temporally ordered regression,

LT_grid outperformed all other methods when the 1980-1989 calibration set was used

for bias-correction. When bias-correction was based on the 1980-2014 calibration

dataset, both LT_grid and EQM_grid performed significantly better than all other

methods, regardless of which GHCND dataset was used for bias-correction.

2.5.3 Elevation

Elevation had comparatively little impact on performance of the methods compared

to monthly variation. The distribution of elevation among GHCND stations in our

study area was not particularly representative of the elevation range and topogra-

phy study area. Elevations in the Lake Champlain Basin range from 30 to 1500m,

whereas the majority of GHCND station elevations ranged from 30 and 400m, and

only one station had an elevation greater than 1000m. This imbalance is unfortu-

nate but not uncommon in climate studies [11], [31], [55], [78]. Including fine-scale

elevation during downscaling is generally recommended, but likely due to the lack of

higher elevation stations, its corrective effect on temperature was not as pronounced.

[155] also found that when interpolating daily minimum and maximum temperatures

from climate stations over a topographically complex region, interpolations were most

accurate when station elevations accurately represented the topography of the study
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region. Including fine-scale elevation data in the downscaling process did have minor

positive influence on performance of the methods. It resulted in improved day-to-day

discrepancies (RMSE), but it had no appreciable impact on distrubtional similarity

(PSS). It could be that quantile-mapping bias-correction techniques had a greater

positive influence on PSS than adjustments due to lapse rates.

2.6 Conclusion

The six high-resolution downscaling and bias-correction methods we presented in

this study are straightforward and easy to implement, and depending on the method,

result in substantially improved RMSE and PSS compared to uncorrected WRF simu-

lations. Although we applied these methods to historical (1980-2014) daily maximum

temperature simulations, methods could be applied to future climate projections and

any type of temperature variable (minimum, maximum, or average). Although the

ranges of performance metrics among methods were narrow, there were statistically

significant differences in performance among methods, and we found that performance

variation was mainly due to differences in bias-correction techniques. The selection

of the most appropriate method for constructing high-resolution, bias-corrected tem-

perature products using station data depends primarily on the intended use of the

resulting data product.

We did not find that one method could simultaneously minimize RMSE and max-

imize PSS. Maximizing PSS is achieved by matching the quantiles of simulated and

observed data (EQM), which, in turn increases distributional similarity between sim-

ulated and observed data. However, minimizing RMSE is achieved by decreasing the
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discrepancy between daily modeled and observed data, which is done most effectively

via a linear regression between simulated and observed data. Thus, bias-correction

methods such as EQM improve PSS but not necessarily RMSE, whereas simple linear

regression transfer functions improve RMSE but generally not PSS. While the objec-

tives of minimizing RMSE and maximizing PSS are not mutually exclusive, they may

be difficult to attain concomitantly in practice.

Based on our results, for processing historical simulations, the most effective

method for improving day-to-day correspondence (RMSE) of simulated and observed

data is LT_grid. In this method, simulations are bias-corrected at the fine-scale

grid by transfer functions obtained from temporally-ordered regressions generated

at station locations. In topographically varied regions performance is further en-

hanced by accounting for fine-scale elevation data in the downscaling process. Unlike

rank-ordered regression, bias-correction with temporally ordered regression is more

sensitive to seasonal bias in simulated data.

To achieve optimal distributional similarity (PSS) of simulated and observed data

in historical downscaling, quantile mapping-based methods (EQM_IDW, EQM_krig

and EQM_grid) are most effective. In EQM_IDW and EQM_krig, WRF simula-

tions are bias-corrected at station locations and then interpolated to the fine-scale

grid. In EQM_grid, bias-correction of interpolated WRF simulations occurs at the

fine-scale grid, but this slight difference in workflow did not result in appreciable

differences in performance compared to EQM_IDW and EQM_krig. The interpola-

tion techniques (IDW, kriging) did not affect performance of EQM-based methods,

which suggests that in creating full-coverage temperature products, deterministic in-

terpolation techniques (IDW) perform as well as geostatistical techniques (kriging).
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Moreover, performance of EQM-based methods did not benefit from the inclusion of

fine-scale elevation data during downscaling. For historical downscaling, EQM-based

methods are generally more resistant to seasonal bias in simulated data. However,

EQM is susceptible to overfitting on calibration data and may not provide robust

bias-correction for future projections.

Quantile-mapping methods in which LT functions are constructed through rank-

ordered regression (LTQM_grid_V and LTQM_grid_C) are less prone to overfitting

on calibration data. Therefore, such methods are better suited improving distribu-

tional similarity (PSS) of future temperature projections than EQM-based meth-

ods. In LTQM_grid_V and LTQM_grid_C, simulated data are bias-corrected at

the fine-scale grid through transfer functions obtained from rank-ordered regressions

generated at station locations. Similar to EQM-based methods, including fine-scale

elevation data during downscaling does not significantly improve distributional sim-

ilarity (PSS). We did not find differences in performance between LTQM_grid_V

and LTQM_grid_C. As LTQM_grid_V accounts for spatial autcorrelation among

LT parameter estimates at station locations, it would likely perform better if LT

parameter estimates at station locations exhibit strong spatial autocorrelation.
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2.7 Appendix

Table 2.6: A1. ANOVA table for full RMSE model

Degrees of Sum Squares Mean Square F value Pr(>F)
freedom

Month 11 84.43 7.68 1526.98 0.0000
Method 5 0.82 0.16 32.64 0.0000
Bias_correction_years 1 0.57 0.57 112.77 0.0000
Elevation 1 1.14 1.14 225.93 0.0000
Month × Method 55 1.28 0.02 4.63 0.0000
Method × Bias_correction_years 5 0.16 0.03 6.35 0.0000
Method × Elevation 5 0.06 0.01 2.46 0.0343
Bias_correction_years × Elevation 1 0.02 0.02 3.71 0.0555
Method × Bias_correction_years × Elevation 5 0.04 0.01 1.61 0.1593
Residuals 198 1.00 0.01

Table 2.7: A2. ANOVA table for full PSS model

Degrees of Sum Squares Mean Square F value Pr(>F)
freedom

Month 11 0.02 0.00 17.88 0.0000
Method 5 0.05 0.01 91.55 0.0000
Bias_correction_years 1 0.03 0.03 244.40 0.0000
Elevation 1 0.00 0.00 0.03 0.8579
Month × Method 55 0.06 0.00 9.13 0.0000
Method × Bias_correction_years 5 0.02 0.00 33.13 0.0000
Method × Elevation 5 0.00 0.00 0.74 0.5910
Bias_correction_years × Elevation 1 0.00 0.00 0.24 0.6266
Method × Bias_correction_years × Elevation 5 0.00 0.00 0.02 0.9997
Residuals 198 0.02 0.00
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Chapter 3

Robust bias-correction of precip-

itation extremes using a novel hy-

brid empirical quantile mapping

method: advantages of a linear

correction for extremes

3.1 Abstract

High-resolution, daily precipitation climate products that realistically represent ex-

tremes are critical for evaluating local-scale climate impacts. A popular bias-correction

method, empirical quantile mapping (EQM), can generally correct distributional dis-

crepancies between simulated climate variables and observed data but can be highly
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sensitive to the choice of calibration period and is prone to overfitting. In this study,

we propose a hybrid bias-correction method for precipitation, EQM-LIN, which com-

bines the efficacy of EQM for correcting lower quantiles, with a robust linear correction

for upper quantiles. We apply both EQM and EQM-LIN to historical daily precipi-

tation data simulated by a regional climate model over a region in the northeastern

United States. We validate our results using a five-fold cross-validation and quantify

performance of EQM and EQM-LIN using skill score metrics and several climatolog-

ical indices. As part of a high-resolution downscaling and bias-correction workflow,

EQM-LIN significantly outperforms EQM in reducing mean, and especially extreme,

daily distributional biases present in raw model output. EQM-LIN performed as

good or better than EQM in terms of bias-correcting standard climatological indices

(e.g., total annual rainfall, frequency of wet days, total annual extreme rainfall). In

addition, our study shows that EQM-LIN is particularly resistant to overfitting at

extreme tails and is much less sensitive to calibration data, both of which can reduce

the uncertainty of bias-correction at extremes.

3.2 Introduction

Climate data is often necessary for social, ecological, and hydrological models and is

routinely used in climate impact models and assessments. Model reliability is largely

dependent on the quality and resolution of climate data products [11], [118], [119],

[156]. The representation of extremes, in particular, can have a disproportionately

large effect on such models [157]. Increases in the frequency, variability, and magni-

tude of extreme precipitation over the last several decades, especially in the north-
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eastern United States, are well-documented [158], [159]. To study the future impacts

of changing extremes at local scales, climate data products must represent extreme

events accurately and be available at fine spatial and temporal resolutions [157]. Gen-

eral circulation models (GCMs) provide important information about historical and

future larger-scale climate trends, but their resolution is too coarse to investigate lo-

calized effects of changes in extreme climate events [5], [8]. Additionally, raw GCM

output is characterized by a non-trivial degree of bias [8], and the ability of GCMs

to reproduce extreme tails of climate variables is limited [44]. Therefore, prior to its

use in hydrological [54], [160], agricultural [161], or ecological models, GCM output

is downscaled to a finer resolution and bias-corrected with respect to observed data

[4]. These post-processing techniques result in climate data that is more realistic at

finer spatial scales. Here, we propose a bias-correction method that more accurately

captures precipitation extremes. We incorporate it into a high-resolution downscaling

and bias-correction workflow for constructing daily, high- resolution data products for

use in modeling efforts.

In the process of downscaling, model output is converted from a coarse to finer res-

olution. In dynamical downscaling, a regional climate model (RCM) is forced with a

GCM, resulting in finer-scale output in which regional climate processes, topography,

and orography are incorporated [15]. In statistical downscaling, statistical relation-

ships between coarse-scale climate variables and local, observed data are established,

and the effects of fine-scale predictors are integrated into downscaled data [122]. Dy-

namical downscaling is computationally intensive and can introduce additional biases

[6], [13], but, localized climate processes, including extremes [17], are generally better

reproduced than in GCMs [18]. However, RCMs do not perform well in capturing the
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most extreme events [44], [162]. Statistical downscaling is efficient, can be applied

to a variety of climate variables [21], and is especially effective in topographically

complex terrain [10]. Climate data products with fine spatial resolutions, which are

important for studying localized changes in extreme climate events, can be generated

by combining statistical and dynamic downscaling, [163]. In this study, we combine

statistical and dynamical downscaling to produce precipitation data products with a

fine spatial resolution.

Downscaling is complemented by bias-correction, a procedure in which climate

model output is adjusted such that its statistical properties (e.g. mean, variance, and

potentially higher moments) resemble those of observations in a common climatolog-

ical period [8], [9]. We note that the terms “downscaling” and “bias-correction” are

sometimes used to refer to equivalent processes. However, in this study, downscaling

only refers to the process in which coarse, gridded climate data is interpolated to

a finer spatial resolution, and bias-correction refers specifically to applying transfor-

mations to climate model output such that distributional biases are reduced. Most

bias-correction methods assume stationarity of model errors over time [55], which can

be problematic for bias-correcting future climate model output over multi-decadal

time spans [47], [154]. In addition, sufficient observational data is necessary to derive

robust transfer functions [154]. Bias-correction methods for precipitation range from

simple approaches such as the “delta change” or “delta factor” method [46] to more

flexible and effective quantile-mapping based methods [46]–[48]. In quantile-mapping

(QM) based methods, a transfer function (TF) maps quantiles of climate model out-

put to those of observed data. QM methods can be parametric [45], non-parametric

[8], or a combination of both [106]. Distribution mapping (DM) is a parametric
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QM method in which known, parametric distributions are fit to observed and model

data. The Gamma distribution is often used to model wet-day precipitation (e.g.

[8], [61], [110]) but is generally not adequate for modeling extreme precipitation tails

[63], [66]. Hybrid DM approaches in which the Gamma distribution is fit to lower

quantiles and a heavy-tailed distribution is fit to tail quantiles can improve bias-

correction of extreme precipitation [66], [164]. A non-parametric counterpart to DM,

empirical quantile mapping (EQM), is a flexible method in which no distributional

assumptions are made. In EQM, the TF represents a mapping from empirical model

quantiles to observed quantiles and typically outperforms DM [53], [67]. EQM is ef-

fective in correcting precipitation variables [22], [53], [73], [165] and is attractive as a

bias-correction method as it corrects the mean, standard deviation, and higher-order

distributional moments [61].

A disadvantage of QM methods and EQM in particular, is their propensity to

overfit on calibration data, especially at precipitation extremes where data is scarce

and highly variable [8], [45], [99]–[101]. In EQM, TFs are interpolated using linear

interpolation, splines, or other smoothing techniques [102]. Flexible methods such as

EQM can result in TFs that can correct model data nearly perfectly (overfitting) but

may not generalize to out-of-sample or future model data. Overfitting is problematic

because it can lead to instability of the TF at higher quantiles [99], [103], [104]. When

applied to future projections, EQM has been shown to significantly distort future cli-

mate change signals [7], [105] and exaggerate or deflate extreme trends, introducing

additional uncertainty into bias-corrected data [47], [106]. Hybrid EQM approaches

that combine parametric and non-parametric modeling can reduce the degree of over-

fitting of the TF at extreme tails [106]. In a hybrid approach, bias-correction below a
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specified threshold is achieved via a non-parametric TF (EQM), while bias-correction

above the threshold is with DM, based on an extreme distribution, such as the Gener-

alized Pareto distribution [106]. Hybrid EQM methods combine the flexbility of EQM

for correcting lower to middle quantiles with the robustness of parametric distribu-

tions for correcting upper quantiles. In particular, the use of extreme or heavy-tailed

distributions for modeling extremes can improve bias-correction of tail quantiles [66],

[101], [106]–[109]. However, the risk of overfitting the TF at distributional tails still

exists, as poor fits to heavy-tailed distributions can introduce outliers [69], [110]. In

addition, selection of the threshold is difficult, as the amount of data beyond the

threshold must be sufficiently large to allow for distribution fitting and must approxi-

mate a known heavy-tailed distribution [66], [111]. There is a need for a hybrid EQM

method in which bias-correction of extremes can be performed without the risk of

overfitting and the introduction of outliers.

We propose and demonstrate a simple, hybrid EQM method for bias-correction

that, when used in conjunction with downscaling, results in high-resolution (1km)

daily precipitation data in which precipitation extremes are accurately represented.

The proposed method, EQM-LIN, combines the effectiveness of EQM for correcting

the bulk of the distribution with a robust, linear correction for extremes. As part

of a high-resolution, downscaling and bias-correction workflow, we use EQM-LIN to

bias-correct historical (1976-2005), daily precipitation data that were dynamically

downscaled by a regional climate model (RCM). We also compare the effectiveness

of EQM-LIN to EQM for bias-correction, with an emphasis on the ability of the

two methods to accurately capture extremes. Because EQM-LIN is computationally

cheap, easy to apply, and corrects both mean and extreme bias for precipitation
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variables, it is an important methodological addition to the body of bias-correction

literature.

3.3 Methods

3.3.1 Data

The study area, the Lake Champlain Basin, consists of parts of Vermont, New Hamp-

shire, eastern New York, United States and southern Quebec, Canada (Figure 3.1).

Eleven watersheds drain into Lake Champlain, and the Green Mountains, Adiron-

dack Mountains, and White Mountains span portions of Vermont, New York, and

New Hampshire, respectively [31]. The study area is approximately 82,657km2. El-

evations range from 30 to 1500 m above mean sea level (MSL). The study area is

characterized by a subhumid continental climate with cold and snowy winters. At

high elevations, mean annual precipitation can reach 1,000-1,520mm, while at low

elevations, mean annual precipitation ranges between 750-900mm; locally intense

precipitation in the form of thunderstorms is likely during summer months [166].
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Figure 3.1: GHCND stations (black) within the study area (red). The study area is approx-
imately 13,251km2.

Simulated historical (1976-2005) precipitation (PRCP) data were generated by the

Advanced Weather and Research Forecasting model (WRF) version 3.9.1, an RCM

[128]. WRF output was generated at a daily temporal resolution. WRF is a widely

used numerical weather prediction system for both research and applied forecast-

ing purposes [128]. Historical simulations (1976-2005) were forced by bias-corrected

Community Earth System Model 1 (CESM1), a GCM [167]. CESM1 historical sim-

ulations were dynamically downscaled with WRF to a 4km resolution using three

one-way nests (36 km, 12 km, 4km). The 4km resolution WRF data were used for

this study. Additional WRF model details are included in the Supplementary Mate-

rials, and a full description and evaluation of simulations can be found in [130].

Historical daily climate station data was obtained from the Global Historical Cli-
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mate Network (GHCND) (https://www.ncdc.noaa.gov/cdo-web/search?datasetid=

GHCND). GHCND data records are adjusted to account for changes in instru-

mentation and other anomalies [74], [82]. We retained only those stations with at

least 70% complete records over the historical time period 1976-2005 (85 stations).

We chose to use station data, rather than gridded data products (e.g. Livneh, [76];

Daymet, [77]; and PRISM, [78]), because interpolation algorithms used to create grid-

ded climate products can introduce bias [79] and additional uncertainty when used

for bias-correcting climate model output [80]. Gridded products can misrepresent

extreme tails [168], and [169] showed that Daymet, Livneh, and PRISM precipita-

tion products varied widely in their representation of wet-day occurrences, length of

wet and dry periods, and precipitation intensity in the South-Central United States.

Station data represent direct climatological measurements and are available through-

out the Northeast [82], [83]. We acknowledge that there is a spatial misalignment

between gridded model data and point-based GHCND station data. In the study

region, elevation has the most significant impact on precipitation. The WRF model

accounts for elevation at a 4km spatial resolution, which is adequate to capture the

main effects of elevation within the study region. In addition,the effect of fine-scale

(1km) elevation is incorporated via topographical downscaling [31], adding further

value to model data. There are numerous studies in the bias-correction literature

that likewise treat point-based station and downscaled model data as equivalent (e.g

[63], [66], [86]).

In the proposed workflow, historical WRF simulations (model output) were down-

scaled to a 1km grid using topographic downscaling, a variation of inverse distance

weighting (IDW) that incorporates elevational lapse rates [31]. Elevation estimates at
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each 1km grid cell were derived by interpolating elevation values from a 30m digital

elevation model (DEM) [131] via IDW. The 1-km grid cell size was chosen based on

resolution requirements for climate impacts modeling efforts over the Lake Champlain

Basin [31], [132].

Prior to bias-correction, historical model data were interpolated to GHCND sta-

tion locations via topographical downscaling for the purpose of constructing TFs.

Downscaled raw WRF model data exhibited a wet bias that was most pronounced

during summer months (Figure 3.2). This type of seasonal bias in WRF model

simulations has also been found in other studies in the northeastern United States,

e.g. [130]. To generate high-resolution, bias-corrected data products, bias-correction

was applied to model data downscaled to the 1km grid. All performance metrics

were calculated using model data topographically downscaled to station locations

and GHCND station data.

Figure 3.2: Mean daily precipitation (mm/day) for raw model (Mod) topographically down-
scaled to GHCND station locations and GHCND station data (Obs) with loess smoothers
(smooth solid lines) overlaid. Daily means are calculated over the 85 GHCND station loca-
tions for years 1976-2005.
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3.3.2 Bias-correction methods

The proposed approach, empirical quantile mapping with a linear correction for ex-

tremes, EQM-LIN, was compared to empirical quantile mapping (EQM), which is one

of the most frequently-used and effective methods for bias-correction. In addition, we

compared EQM-LIN to DM with the Gamma distribution (DM-GAMMA), a hybrid

EQM approach in which lower quantiles were corrected using EQM, and upper quan-

tiles were fit to Generalized Pareto Distributions (GPDs) (EQM-GPD) [106], as well

as a trend-preserving method, quantile delta mapping (QDM) [47]. The results are

presented in the Supplementary Material but not evaluated in the main manuscript,

since none of the additional methods performed as well as or significantly better than

EQM or EQM-LIN.

For both bias-correction methods EQM-LIN and EQM, TFs were constructed by

spatially pooling GHCND station and model data downscaled to station locations.

The same TF was applied to all model values, regardless of spatial location. We chose

to spatially pool data because 1) much of the spatial variation in the data is due to

elevation, which is accounted for during the downscaling procedure, 2) additional

interpolation necessary to construct separate TFs based on spatial location would

have added uncertainty to bias-corrected data. Spatially explicit bias-correction in

general can be a difficult task and involves estimating the TF at every location at

which bias-corrected data is desired [100], which is contrary to our desire to develop

a bias-correction approach that is simple, efficient, and easily implemented.

For both bias-correction methods, twelve TFs were constructed, one for each

month of the year [45], [53]. Daily raw model values interpolated to the 1km grid
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were corrected with the corresponding monthly TF. Because GHCND station gauges

are accurate to 0.1mm [74], we defined wet-day precipitation days as days in which

daily precipitation was greater than or equal to 0.1mm. Prior to construction of TFs

and bias-correction, values of daily MODinterp,station and model interpolations to the

1km grid below 0.1mm were set to 0. All analyses were conducted in R Statistical

Language [139].

Empirical quantile mapping: EQM The TF used in EQM is expressed by the

empirical cumulative distribution function (ecdf) and its inverse (ecdf−1). Monthly

TFs are of the form:

xcorr,t = ecdf−1
obs(ecdfmod(xmod,t)), (3.1)

where, xcorr,t is the corrected model precipitation value on day t, ecdf−1
obs is the inverse

ecdf of observed data, ecdfmod is the ecdf of model data, and xmod,t is the raw model

precipitation value on day t. Monthly TFs were constructed using 10,000 estimated

quantiles, and interpolation of the TF was accomplished with monotone Hermite

splines using the qmap package [102] in R. Values exceeding the range of the TF were

corrected using the method of constant extrapolation [75]. The approximate shape of

the TF can be examined by plotting estimated quantiles of model and observed data

against one another to form a “quantile-quantile-” or “qq-” map (Figure 3.3). The

shape of the quantile-quantile map can provide insight into the type and magnitude

of model bias. For instance, if the TF falls below (rises above) the 1:1 line, model

quantiles are too high (low) relative to observed quantiles.
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Figure 3.3: A quantile-quantile map for August constructed with 10,000 quantiles of model
and observed data during the calibration period. The red solid line denotes the 1:1 line.
Here, raw model data exhibits a low bias, especially at upper quantiles, as the qq-map lies
above the 1:1 line.

Empirical quantile mapping with a linear correction for extremes: EQM-LIN

In EQM-LIN, the majority of model data are bias-corrected via EQM using (3.1),

while model data beyond a specified threshold are adjusted with a constant correction

via a linear TF (3.2). All bias-correction by EQM was done with the qmap package

[102] in R, and custom code was used to construct the linear TF. The following steps

describe the EQM-LIN procedure:

1. Calibration data is divided into two datasets in which model data is less than
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(CAL-LOW ) and greater than a specified threshold (CAL-HIGH ). The thresh-

old, T is a function of the inverse ecdf of model data and is expressed as

T = ecdf−1
mod(τLIN), where 0 < τLIN < 1. Thus, T is a precipitation value

in mm that indicates where both model and observed datasets are divided. The

procedures for estimating T and τLIN are thoroughly outlined in the Appendix.

2. Next, the intercept for the linear TF, δ is obtained (details are discussed in

the Appendix). The intercept represents the constant correction that will be

applied to extreme model values (all model values in CAL-HIGH). The linear

TF is expressed as xcorr,t = δ + xmod,t and is applied to model values in CAL-

HIGH (eq. 3.2). Model values in CAL-LOW are corrected via EQM. The TF

for EQM-LIN is expressed as:

xcorr,t =


ecdf−1

obs(ecdfmod(xmod,t)), xmod,t < T

xmod,t + δ, xmod,t ≥ T,

(3.2)

where xcorr,t and xmod,t are as defined in (eq. 3.1). Thus, the linear portion of

the TF (xcorr,t = δ + xmod,t) always has a slope of 1 and intercept δ.

In this study, we only consider linear TFs with a slope of 1 and intercept of δ.

Optimizing the slope as well as the threshold would increase the overall complexity

of EQM-LIN and could introduce the potential for overfitting on out-of-sample data.

We chose τLIN to be 0.79, based on a grid search over a range of values in a

five fold cross-validation approach (details are discussed in the Appendix). We chose

the value of τLIN that resulted in the minimization of the mean absolute error of

observed and model ecdfs above the 95th percentile (MAE95), [170] (section 3.4).
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MAE95 quantifies the distributional similarity between observed and model data at

extremes. Since the focus of this study was on accurately representing distributional

extremes, we chose the minimization of MAE95 rather than another metric. However,

we found that minimization of MAE95 resulted in improvements in all performance

metrics and indices.

The shape of the EQM-LIN TF is identical to that of EQM below T , while above

the threshold the TF is linear. Figure 3.4 shows a quantile-quantile map for model

and observed data for the month of August and the associated EQM and EQM-LIN

TFs.
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Figure 3.4: The quantile-quantile map and corresponding EQM and EQM-LIN TFs for
daily observed and model data during the month of August over the calibration period 1976-
2005. a) quantile-quantile map, constructed using 10,000 quantiles evenly spaced between
0 and 1; b) EQM TF ; c) EQM-LIN TF, with the blue line denoting the non-parametric
(EQM) portion of the TF and the red line indicating the linear portion; d) enlarged section
of EQM-LIN TF in c) (grey box) to illustrate the transition from EQM portion to the linear
portion of the TF. In c) and d), the threshold (dashed line), indicates the 79th quantile of
model data (6.88mm).
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3.4 Validation

Performance evaluation of EQM and EQM-LIN was accomplished with a five-fold

cross-validation procedure using observed and model data during the calibration

period (1976-2005). Cross-validation is commonly used to evaluate the efficacy of

bias-correction methods, as out-of-sample data can be considered proxies for future

projections [53], [61], [106]. Test datasets always consisted of consecutive years. For

example, if training data consisted of years 1976-2000, test data would contain years

2001-2005.

We chose performance metrics and indices that quantified 1) model skill and 2)

the effectiveness of bias-correction methods in capturing overall climatology with an

emphasis on extreme tails. All performance metrics were calculated using model

data topographically downscaled to GHCND station locations and GHCND station

data. Model skill, distributional similarity between model and observed data, was

quantified with the mean absolute error (MAE). We chose MAE, rather than other

skill metrics, such as the Perkins Skill Score [145], because it is more sensitive to

outliers. Since TFs for EQM and EQM-LIN were constructed on a monthly basis,

MAE metrics were evaluated by month. MAE was calculated between distributions of

daily observed and raw model data as well as between distributions of daily observed

and bias-corrected data at GHCND station locations for a given month [61]. MAE95

was used to quantify model skill at extreme tails. MAE95 is computed similarly to

MAE, but only the upper 5% of daily observed and model distributions are used

[170]. The number of quantiles estimated in the calculation of MAE95 was equal

to the maximum number of 95th quantile values in observed or model distributions.
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Generally, the number of values greater than the 95th quantile in each data type (raw

model, observed, and corrected model) did not differ appreciably. MAE and MAE95

values were calculated by month for each of the five cross-validated data folds for raw

and bias-corrected data, and results are reported as the average metric over the five

folds. MAE and MAE95 quantify distributional error between model and observed

data; lower values are indicative of better model skill, with an ideal mean absolute

error of 0 (no error).

We used a subset of ETCCDI indices [171] to assess how well bias-corrected data

captured overall climate characteristics of observed data. ETCCDI indices are stan-

dard indices that allow for the comparison of results over varying time periods, ge-

ographical regions, and source data, and are recommended by the World Research

Climate Program (WRCP) [172]. ETTCDI indices were computed annually with

spatially pooled data. Prior to calculating ETCCDI indices, downscaled raw model,

bias-corrected model, and station data were averaged over the 85 station locations for

each day in the 30-year calibration period (10950 days). Thirty annual values of each

ETCCDI index were calculated for observed, raw model, and bias-corrected model

data. The choice of indices was based on the preference of stakeholders.

‘D’ indices (D90, D95, and D99) are defined as the annual number of days in which

mean daily precipitation exceeded the 90th, 95th, or 99th quantiles. ‘S’ metrics (S90,

S95, and S99) are defined as the annual sum of mean daily precipitation (mm) for

days in which mean daily precipitation exceeded the 90th, 95th, or 99th quantiles.

TotalP is the annual sum of mean daily precipitation (mm) on wet days (days for

which mean daily precipitation 0.1 mm), WetDays is the annual count of wet days,

and the simple precipitation index (SPI) is calculated as TotalP/WetDays (mm/day).
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SPI is a measure of precipitation intensity. The nine indices characterize the extreme

tails, as well as general characteristics, of the 30-year climatology of precipitation.

An overview of MAE metrics and ETCCDI indices is given in Table 3.1.

Performance evaluated by ETCCDI indices or MAE metrics cannot be directly

compared, since each provides assessments on different temporal scales. MAE metrics

quantify distributional errors of the entire distribution of daily model data compared

to observed data. ETCCDI indices quantify how well model data capture 30-year

climatology at a temporally coarser (annual) scale using spatially averaged data. In

combination, both evaluation metrics give insight in the overall adequacy of the bias-

correction method at both aggregated and finer temporal scales.

Table 3.1: Metric and index definitions

Metric/Index Definition Reference

MAE

Mean absolute error of quantiles of observed and
raw model or bias-corrected model distributions. MAE

is calculated using daily data (not spatially averaged) for the
entire historical period using 10,000 estimated quantiles

[61]

MAE95
Mean absolute error of upper 5% of quantiles of observed and

raw model or bias-corrected model distributions. MAE95 is calculated using
daily data (not spatially averaged) for the entire historical period.

[65]

D90, D95, D99 Annual count of days for which mean daily precipitation exceeded the 90th
95th or 99th percentile [173]

S90, S95, S99 Annual sum (mm) of mean daily precipitation on days in which mean daily
precipitation exceeded the 90th , 95th, or 99th percentile. [173]

TotalP Annual sum (mm) of mean daily precipitation on days in which mean daily
precipitation ≥ 0.1mm [173]

WetDays Annual count of days in which mean daily precipitation ≥ 0.1mm [173]
SPI Simple precipitation index (mm / day) calculated as TotalP / WetDays [173]

3.4.1 Analyses

Bayesian one-way Analysis of Variance (ANOVA) models were used to determine if

MAE and MAE95 differed significantly among raw model, EQM and EQM-LIN data.

Separate ANOVA tests were conducted for MAE and MAE95. ANOVA tests were
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conducted with data from all five cross-validated folds, as MAE and MAE95 values

within folds can be considered subsamples. All analyses were conducted with the

RJags package [174] in R. The response variables, MAE or MAE95 values, were log-

transformed prior to analysis to ensure homogeneity of variances, an assumption of

ANOVA models. The predictor variable for both ANOVA models was data type, a

variable with three levels: raw model (Mod), EQM-LIN, and EQM. Credible intervals

in the form of 95% highest posterior density (HPD) intervals were used to determine

if the difference in posterior distributions was significantly different from 0. Credi-

ble intervals were constructed for all pairwise differences of posterior distributions of

EQM-LIN, EQM, and raw model data. Credible intervals can be interpreted as fol-

lows: there is a 95% chance that the true pairwise difference in posterior distributions

is contained within the interval, given the data. Therefore, if 0 is contained within

the interval, the difference is not significant at the 95% confidence level. Full details

on these analyses are provided in the Supplementary Materials.

Distributions of all nine ETCCDI indices calculated from EQM-, EQM-LIN-

corrected, and raw model data were compared to those of observed data. Performance

of bias-corrected and raw data relative to observed data was formally assessed using

Kolmogorov-Smirnov (KS) tests [175]. The two-sample KS test is a non-parametric

test that is used to assess the equality of two empirical distributions. It is sensitive to

differences in both location and shape of the two ecdfs being compared and is often

used in climatological studies [47], [176], [177]. Here, we applied the KS test three

times for each ETCCDI index to determine the similarity of ecdfs between observed

and EQM- and EQM-LIN-corrected data and between observed and raw model data.

All tests were conducted with the two-sided null hypothesis that the samples being
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compared belonged to a common distribution. The significance level, α, was set to

0.05; p-values below 0.05 indicate there is evidence that the two samples do not come

from a common distribution. We acknowledge that the KS test has low power for

small sample sizes (30 values or less) [178]. All KS tests in this study are performed on

pairs of distributions composed of 30 annual values; thus, we use KS tests, along with

visual inspection of boxplots, to guide our interpretation of results. In addition, to

control for multiple comparisons, α was adjusted using the Holm-Bonferroni method

[179] (details are shown in the Appendix).

3.5 Results

Overall, data bias-corrected with either EQM or EQM-LIN exhibited substantial

improvements in both MAE and MAE95 compared to raw model data (Mod), but

improvements were more pronounced for EQM-LIN. Both bias-correction methods

generally improved ETCCDI indices compared to Mod, and EQM-LIN performed as

well as or slightly better than EQM.

3.5.1 MAE and MAE95

MAEs of EQM- and EQM-LIN-corrected datasets were 0.704mm and 0.655mm, re-

spectively, while MAE of Mod was 1.06mm (Figure 3.5 a). MAEs of both bias-

corrected datasets were significantly lower than MAE of Mod. Monthly MAE values

for EQM-LIN were overall slightly lower than those of EQM. The credible interval

for the difference in MAE between EQM and EQM-LIN contained 0, indicating that

although MAE of EQM-LIN was lower than that of EQM, the difference was not
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significant at the 95% confidence level.

MAE95 values of EQM- and EQM-LIN-corrected model data and Mod were

3.45mm, 1.73mm, and 7.12mm, respectively. For EQM-LIN corrected data, MAE95

varied little among months; however, both raw model and EQM-corrected data exhib-

ited substantial increases in MAE95 between months 8 and 11 (Figure 3.5 b). Similar

to results for MAE, MAE95 values of both bias-corrected datasets were significantly

lower than MAE95 of Mod. In contrast to results for MAE, 95% credible intervals

for the difference in MAE95 of EQM and EQM-LIN indicated that MAE95 of EQM-

LIN was significantly lower than MAE95 of EQM at the 95% confidence level (see

Supplementary Materials for full details of ANOVA analysis).

Figure 3.5: Monthly MAE (mm) (a) and MAE95 (mm) (b) for raw model (Mod), EQM-
and EQM-LIN-corrected data. Please note the difference in y-axes limits for plots a and b.
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3.5.2 ETCCDI indices

Distributions of ETCCDI indices for both bias-corrected datasets more closely resem-

bled those of observed data compared to Mod, with EQM-LIN performing as good as

or slightly better than EQM. Generally, mean and extreme total annual precipitation

was overestimated in Mod, but Mod performed adequately in capturing extreme wet

day frequency. While bias-correction resulted in the distributions of most ETCCDI

indices becoming more similar to those of observed data, it also resulted in an un-

derestimation of wet-day frequency. (See Appendix, Table 3.3 for selected summary

statistics of ETTCDI index distributions for Mod, EQM, and EQM-LIN).

D and S indices Less extreme ‘S’ indices (S90 and S95) were substantially over-

estimated in Mod, and distributions of S90 and S95 calculated from Mod were sig-

nificantly different from observed data (Figure 3.6 a; Table 3.2). The distribution

of the more extreme S99 index was better represented in Mod and did not differ

significantly from observed data. Both bias-correction methods provided minor im-

provements of the representation of S99 in Mod. Distributions of S90 and S95 were

not significantly different for EQM-LIN as compared to observed data (Figure 3.6 a;

Table 3.2). However, for EQM, the distribution of S95 differed significantly from that

of observed data (Table 3.2). While both bias-correction methods were able to re-

duce the overestimation of total extreme annual rainfall exhibited in Mod, EQM-LIN

slightly outperformed EQM.

Distributions of ‘D’ indices (D90, D95, and D99) were quite similar for Mod, bias-

corrected, and observed data (Figure 3.6 b). P-values of KS tests for D90, D95, and

D99 confirmed that distributions of Mod and bias-corrected data were not significantly
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different from observed data (Table 3.2). These results show that the frequency of

extreme precipitation days, D90, D95 and D99, are adequately represented in Mod

and that bias-correction via either method does not adversely affect the representation

of ‘D’ indices.
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Figure 3.6: Boxplots of a) D90, D95, and D99 and b) S90, S95, and S99 for observed
(Obs), model (Mod), EQM-, and EQM-LIN-corrected data. Each boxplot represents 30
values (ETCCDI indices are calculated annually). Significance of KS-tests of distributional
similarity of Mod, EQM, or EQM-LIN compared to Obs at α = 0.05, adjusted with the
Holm-Bonferroni method, are indicated with (*).
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TotalP, WetDays, and SPI TotalP was significantly overestimated in Mod (p

< 0.0001), but distributions of TotalP calculated using either bias-corrected dataset

were not significantly different from observed data (p = 0.81) (Figure 3.7; Table 3.2).

Thus, both bias-correction methods were highly effective in correcting total annual

precipitation.

The distribution of WetDays derived from Mod did not differ significantly from

observed data (p = 0.13) (Table 3.2). However, WetDay distributions calculated

from EQM- and EQM-LIN-corrected data were significantly underestimated relative

to observed data (p < 0.0001) (Figure 3.7; Table 3.2). SPI was overestimated by

Mod, due to the large overestimation of Total P; SPI was overestimated to a lesser

degree, by EQM- and EQM-LIN-corrected data due to the underestimation of Wet-

Days (Figure 3.7). Distributions of SPI calculated from EQM, EQM-LIN, and Mod

all differed significantly from observed data (Table 3.2). Although bias-correction

via either EQM-LIN or EQM results in underestimating WetDays, annual precipi-

tation totals (TotalP) are effectively corrected. Moreover, while the distribution of

WetDays is adequately represented in Mod, Mod contains an excessive number of

low-precipitation occurrences relative to observed data (see Supplementary Materi-

als, section 4). However, despite the underestimation of wet day frequency following

bias-correction, precipitation intensity (SPI) is slightly improved compared to raw

model data.
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Figure 3.7: Boxplots of TotalP, WetDays, and SPI for observed (Obs), model (Mod), EQM-
, and EQM-LIN-corrected data. Each bxplot represents 30 values (ETCCDI indices are
calculated annually). Significance of KS-tests of distributional similarity of Mod, EQM, or
EQM-LIN compared to Obs at α = 0.05, adjusted with the Holm-Bonferroni method, are
indicated with (*).
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Table 3.2: Two-sample Kolmogorov-Smirnov (KS) test results for raw model (Mod), EQM-,
and EQM-LIN-corrected distributions of ETCCDI indices compared to observed distributions
of ETCCDI indices. D is the KS test statistic. P-values refer to a two-sided null hypothesis;
p-values < 0.05 indicate that the distribution of a particular ETCCDI index for either Mod,
EQM-LIN or EQM is significantly different from that of observed data at the 5% significance
level. All ETCCDI index distributions consisted of 30 annual values. Significance of KS-
tests at α = 0.05, adjusted with the Holm-Bonferroni method, are indicated with (*).

S90 D p

Mod 0.73 <0.0001*
EQM-LIN 0.33 0.07
EQM 0.40 0.02

S95 D p

Mod 0.43 0.007*
EQM-LIN 0.33 0.007*
EQM 0.40 0.02

S99 D p

Mod 0.30 .13
EQM-LIN 0.23 0.39
EQM 0.33 0.07

D90 D p

Mod 0.17 0.80
EQM-LIN 0.13 0.95
EQM 0.17 0.80

D95 D p

Mod 0.17 0.80
EQM-LIN 0.13 0.95
EQM 0.17 0.80

D99 D p

Mod 0.10 1
EQM-LIN 0.10 1
EQM 0.10 1

TotalP D p

Mod 0.73 <0.0001*
EQM-LIN 0.17 0.808
EQM 0.17 0.808

WetDays D p

Mod 0.30 0.13
EQM-LIN 0.97 <0.0001*
EQM 0.90 <0.0001*

SPI D p

Mod 0.73 <0.0001*
EQM-LIN 0.53 0.0003*
EQM 0.60 <0.0001*
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3.6 Discussion

Local-scale modeling efforts in hydrology, ecology, agriculture, and economics, as well

as climate impact assessments, require high-resolution climate products. Since cli-

mate extremes exert a large influence on humans and the environment, it is crucial

that extremes are accurately represented in climate products. An effective way to

obtain high-resolution climate products is to statistically downscale and bias-correct

dynamically downscaled output from an RCM. Bias-correction of precipitation ex-

tremes, in particular, is a difficult task. In this study, we developed a hybrid bias-

correction method, EQM-LIN, that combines the efficacy of EQM for bias-correcting

the bulk of raw model data, with a robust linear adjustment for correcting distribu-

tional tails. We found that EQM-LIN results in the accurate representation of mean

and extreme precipitation. EQM-LIN outperformed EQM in terms of model skill

(MAE and MAE95) and performed at least as well or better than EQM with respect

to most ETCCDI climatological indices. Furthermore, our study indicates that a

linear correction, as implemented in EQM-LIN, is resistant to overfitting and results

in a more robust TF at higher quantiles, both of which can decrease uncertainty in

bias-corrected data.

The substantial difference in performance between EQM-LIN and EQM with re-

spect to model skill is due to the different ways in which TFs are constructed at

extreme tails. In EQM, distributional tails are corrected with a flexible TF that

closely interpolates the quantile-quantile map of raw and observed data. However,

since data at extreme tails is, by definition, scarce and variable, the TF produced by

EQM may be unstable and can result in a faulty correction on out-of-sample model
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data [47], [144]. In our study, MAE95 values of EQM increased markedly between

months 8 and 11, reaching a maximum in month 9, while those of EQM-LIN remained

near 2.5mm (Figure 3.5 b). An inspection of training and testing datasets used during

cross-validation reveals that often, the association between raw model and observed

quantiles (the quantile-quantile map) was quite different between training and cor-

responding testing datasets. In such cases, EQM tended to overfit on training data,

and consequently, the correction applied to testing data was unsuitable.

Figure 3.9 depicts such a scenario for month 9, when the difference in MAE95

between the two bias-correction methods was large. In Figure 3.9, the EQM TF

constructed with training data (black dots) extends non-linearly above the one-to-

one line and then increases sharply. The shape of the training TF indicates that,

generally, raw model quantiles are too low relative to those of observed data. When

the training TF is applied to test data, raw model values in the tails, especially, are

increased. For instance, a raw model value of 58.6mm would be corrected to 81.8mm

(Figure 3.9). However, the relationship between raw model and observed quantiles

in the test data (blue dots), indicates that raw model quantiles are only slightly too

high compared to observed quantiles (Figure 3.9). When raw model data in the test

set are bias-corrected with the training TF, raw model values are increased too much

relative to observed values (Figure 3.9). The quantile-quantile map of corrected model

quantiles and observed quantiles (which should lie near or on the one-to-one line if the

correction was satisfactory) is shifted far to the right of one-to-one line, indicating that

corrected model values, especially in the tails, are too high. This example shows that

the flexibility of EQM is also what makes it susceptible to overfitting on calibration

data and supports other studies showing that EQM is sensitive to the choice of, and
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can overfit on calibration data [8], [45], [65], [100], [144].

For the same scenario, EQM-LIN produces a linear TF at extreme tails with a

slope of 1 and an intercept of δ (the constant correction factor) (Figure 3.10). Raw

model values are adjusted by a constant, δ. Though this approach is less flexible than

that of EQM, it produces more stable TFs and is less sensitive to training data. In

Figure 3.10, the training TF for EQM-LIN (black dots) is linear and does not exhibit

the fluctuations apparent in the training TF of EQM (Figure 3.9). The intercept (δ)

of the TF in Figure 3.10 is slightly less than zero, which means that raw model values

will be decreased by δ. The TF for EQM-LIN represents an appropriate correction,

as model quantiles in the test dataset are, in fact, too high relative to observed

quantiles (Figure 3.10, blue dots). For instance, the TF of EQM-LIN corrects a raw

model value of 58.6mm to 58.1mm (Figure 3.10). Accordingly, the quantile-quantile

map of corrected model quantiles and observed quantiles is close to the one-to-one

line, indicating a satisfactory correction.

Figures 3.9 and 3.10 are representative of scenarios in which the relationship be-

tween raw model and observed quantiles differ between training and testing data

and highlight the differences in bias-correction between EQM and EQM-LIN. In our

study area, such scenarios are common in months when precipitation is variable and

when extreme precipitation events are more likely (months 6-9). The difference in

bias-correction between EQM-LIN and EQM can also be seen visually in downscaled,

bias-corrected data over the study region. Figure 3.8 shows raw, downscaled, and

corrected and downscaled precipitation data for one day in which mean precipitation

exceeded the 95th percentile (September 12, 1986). Note that in Figure 3.8, EQM re-

sults in an increase of high precipitation values (bright pink regions), while EQM-LIN
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results in a slight dampening of precipitation in the same regions. A model precipi-

tation value of 52.14mm is transformed to 68.25mm using EQM and 51.28mm using

EQM-LIN. The increase and dampening effects of EQM and EQM-LIN, respectively,

in Figure 3.8 are a result of differences in EQM and EQM-LIN transfer functions.
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Figure 3.8: Raw model, downscaled raw model, and bias-corrected data for one day (Septem-
ber 12, 1986) (a) with corresponding TFs for EQM (b) and EQM-LIN (c). Plot (a) shows
raw model (4km grid), downscaled raw model (1km grid), and downscaled and bias-corrected
precipitation data (mm) for a day on which daily mean precipitation exceeded the 95th quan-
tile (September 12, 1986). Plots (b) and (c) show the corresponding EQM and EQM-LIN
TFs, respectively; in (b) and (c), gray lines indicate how EQM and EQM-LIN adjust the
maximum model precipitation value for this day (52.14 mm) as an example. This figure
is intended to provide an example of how the correction of raw model data differs between
EQM and EQM-LIN.
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Though EQM-LIN significantly outperformed EQM in terms of model skill (MAE

and MAE95), results were not as dramatic for climatological (ETCCDI) indices.

ETCCDI indices are calculated using spatially averaged, daily data, which reduces

variation and may explain the similarity in performance of EQM and EQM-LIN

for ETCCDI indices. Bias-correction via both EQM and EQM-LIN resulted in im-

provements over raw data for most indices. Though both bias-correction methods

improved the overestimation of total annual mean precipitation (TotalP) as well as

total extreme annual precipitation (Sum90) exhibited in raw model data, EQM-LIN

performed slightly better than EQM for moderate extremes (Sum95). Raw model

data adequately captured higher extremes (D99, S99); bias-correction provided slight

improvement in the representation of S99.

Interestingly, the distribution of raw model wet day frequency (WetDays) was

similar to that of observed data, while bias-correction via either method resulted in

considerable underestimation of wet day frequency. The negative impact of bias-

correction on wet day frequency is most likely due to the excessive number of low-

precipitation occurrences (“drizzle effect”) [44], [162] in raw model data. EQM, which

is used to correct low-valued quantiles in both bias-correction methods, results in the

majority of excessive low-precipitation days being set to zero. The underestimation

of wet day frequency after bias-correction via EQM is not unusual; similar results

were found by [98] and [180]. Moreover, although wet-day frequency appears to be

adequately represented in raw model data, it comes at the expense of substantial over-

estimation of total annual precipitation (TotalP) and precipitation intensity (SPI).

After bias-correction via either method, precipitation intensity is better represented,

and the distribution of total annual precipitation is very close to that of observed
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data. Thus, for most climatological indices, bias-correction via either method pro-

vides critical improvements to raw model data, especially with respect to extremes.

Conclusion

In this study, we show that a hybrid EQM approach for bias-correction (EQM-LIN),

in which the majority of model data is corrected via EQM and extreme tails are

corrected by a linear TF, resists overfitting on calibration data, increases overall and

model skill, especially at extreme tails, and results in a better representation of clima-

tological indices compared to conventional EQM. Our method is simple, intuitive, and

easy to implement, making it a suitable alternative to EQM for bias-correcting his-

torical and future climate simulations. Though we apply the method to precipitation

data, we expect it could be applied to other climate variables as well. Future work

might include adjusting the slope of the linear correction or using another function

to construct the TF at extreme tails.
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Figure 3.9: Construction of the EQM TF in a train-test scenario; data for this plot reflect
one particular train-test fold used during cross-validation for month 9 (September). The
TF obtained from training data is shown in black. The quantile-quantile map of model and
observed data in the test set is shown in blue. The corrected quantile-quantile map (quantiles
of corrected model data versus quantiles of observed data) in the test set are shown in red.
xmod,t and xcorr,t denote model and corrected model values, respectively, for day t. Gray
arrows indicate how model data in the test set is corrected, based on the TF from training
data.
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Figure 3.10: Construction of the EQM-LIN TF in a train-test scenario; data for this plot reflect
one particular train-test fold used during cross-validation for month 9 (September). The TF obtained
from training data is shown in black. The quantile-quantile map of model and observed data in the
test set is shown in blue. The corrected quantile-quantile map (quantiles of corrected model data
versus quantiles of observed data) in the test set are shown in red. xmod,t and xcorr,t denote raw
model and corrected model values, respectively, for day t. Gray arrows indicate how raw model data
in the test set is corrected, based on the training-set TF. The threshold (dashed line), indicates the
79th quantile of model data (6.88mm). For ease of viewing, plot a) (gray box) shows the scenario at
selected lower (0-10 mm) precipitation quantiles, and plot b) (gray dotted box) shows the scenario at
selected extreme (50-80mm) precipitation quantiles.
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3.7 Appendix

3.7.1 Estimating the threshold T and intercept

δ

The first step for obtaining the threshold T is to estimate τLIN from the data. We

chose τLIN to be 0.79, based on a grid search over a range of values in a five fold

cross-validation approach. We chose the value of τLIN that resulted in the mini-

mization of the mean absolute error of observed and model ecdfs above the 95th

percentile (MAE95), [170] (section 3.4). It is crucial that τLIN be estimated using

cross-validation; our result of τLIN = 0.79 may not generalize to all data.

To obtain T , we must assume a fixed value of τLIN . The next steps involves the

construction of ecdfs for observed and model data in the calibration period. Ecdfs

are constructed using 10,000 quantiles evenly spaced between 0 and 1. Next, the

threshold, T is computed as ecdf−1
mod(τLIN). Note that, T is the model precipitation

value in mm corresponding to the quantile τLIN (whereas 0 ≤ τLIN ≤ 1).

To obtain δ, we assume that T has been calculated. Ecdfs of observed and model

data are constructed using 10,000 quantiles evenly spaced between 0 and 1. Values

in the ecdfs of model and observed data are sorted in increasing order. Note the rank

of T within the sorted precipitation values of the model ecdf; the rank value will be

denoted as RT . For example, suppose T = 12mm and the rank of T within the ecdf

of model data is 5,000, then RT = 5000.

Next, select the precipitation value from sorted, observed ecdf at rank RT and

denote this value as Tobs. The intercept of the linear TF, δ which represents the
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constant correction, is calculated as the difference Tobs − T . Continuing with the

example, suppose Tobs = 9.1mm; then δ = 9.1 − 12 = −2.9. This means model

extremes (all values ≥ T ) will be decreased by 2.9mm.

The constant correction at extremes, δ, is similar to the constant extrapolation

correction used by [75]. However, here, the constant correction is the difference

T − Tobs, whereas in [75], it is ecdf−1
obs(1.00) − ecdf−1

mod(1.00).

3.7.2 KS Test

The KS test statistic, D is computed as

(Dn = sup
x

|Fn(x) − Gn(x)|). (3.3)

In (3.3), Fn and Gn are the two ecdfs being compared, n denotes the number of

independent and identically distributed ordered values used to obtain Fn and Gn,

and sup
x

is the supremum of the collection of n distances.

3.7.3 Holm-Bonferroni method for multiple com-

parisons

When multiple statistical comparisons are made, it is often necessary to adjust the

Type I error rate (commonly referred to as the significance level or α). The Type

I error rate is the probability of falsely rejecting the null hypotheses when it is, in

fact, true (a false positive). In the context of multiple hypothesis testing, it is often

desirable to adjust the family-wise error rate (FWER), the probability of rejecting
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one null hypothesis in m hypothesis tests. The Holm-Bonferroni method is suitable

when a less conservative adjustment of the FWER is preferred.

Suppose m hypothesis tests have been conducted, and m p-values have been cal-

culated. The Holm-Bonferroni adjustment for the FWER involves two steps:

1. Order p-values from least to greatest and assign each p-value a rank from 1 to

k, k = 1 . . . m

2. Find the smallest p-value such that pk < α
m+1−k

.

If the condition in step 2 is true, the p-value is significant; if the condition in step 2

if false, the p-value is not significant.

3.7.4 Summary results for ETCCDI indices
Table 3.3 shows the 25th, 50th, and 75th quantiles for each data type (Mod, EQM,
and EQM-LIN) and ETCCDI index.
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Table 3.3: 25th (Q25), 50th (Q50), and 75th (Q75) quantiles of ETCCDI indices for ob-
served data (Obs), raw model data (Mod), and EQM-, and EQM-LIN-corrected data during
the calibration period (1976-2005). Each ETCCDI index was calculated using 30 annual
values.

Data type Q25 Q50 Q75

Sum90

Obs 401.63 456.20 531.18
Mod 533.62 595.78 668.31
EQM 501.05 574.38 645.14

EQM-LIN 463.71 542.41 605.23

Sum95

Obs 239.03 287.21 338.08
Mod 311.85 377.51 428.63
EQM 307.08 378.51 431.53

EQM-LIN 287.94 337.40 400.09

Sum99

Obs 60.29 83.17 114.33
Mod 311.85 377.51 428.63
EQM 55.09 105.16 154.46

EQM-LIN 55.10 101.02 138.54

D90

Obs 32.25 35.50 42.00
Mod 33.00 36.50 40.00
EQM 32.25 37.00 39.75

EQM-LIN 32.25 37.00 39.75

D95

Obs 14.25 18.00 21.75
Mod 15.25 17.50 20.75
EQM 16.00 19.00 20.75

EQM-LIN 16.00 18.00 21.00

D99

Obs 2.25 3.50 4.00
Mod 15.25 17.50 20.75
EQM 2.00 3.50 5.00

EQM-LIN 2.00 3.50 5.00
TotalP

Obs 961.92 1032.81 1112.80
Mod 1242.30 1296.84 1367.50
EQM 991.24 1077.74 1132.50

EQM-LIN 951.56 1022.26 1076.33

WetDays

Obs 283.00 289.50 293.00
Mod 289.00 294.00 299.75
EQM 249.25 258.00 265.75

EQM-LIN 240.50 251.50 259.25

SPI

Obs 3.39 3.55 3.78
Mod 4.19 4.47 4.61
EQM 3.74 4.13 4.34

EQM-LIN 3.77 4.07 4.29
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Chapter 4

Calibrating output from numeri-

cal climate models featuring a pro-

cess convolution approach for cor-

recting temporal dependence

4.1 Abstract

Output from numerical models at high spatial and temporal resolutions is critical for

applications in a variety of disciplines, ranging from ecology to economics and agricul-

ture. Output from climate models must be brought to a finer spatial resolution and

calibrated with respect to observations prior to its use in modeling applications. The

calibration of model output, referred to as bias-correction, is a challenging task due to

relatively short calibration and long future time periods. Here, we propose a new bias-
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correction method in which biases in temporal dependence are assessed and corrected

using a multi-resolution process convolution approach. Biases in seasonal means

and standard deviations are corrected via a series of linear transformations. The

proposed method guarantees that there is no discontinuity in bias-corrected model

output at the transition from the calibration to future time period and preserves the

future climate change signal. We compare the proposed method to a widely used

quantile-mapping bias-correction method, empirical quantile mapping (EQM). After

adjustment via the process convolution approach, temporal dependence structures of

model output resemble those of observed data. In addition, the proposed method

better corrects biases of means and standard deviations compared to EQM. Finally,

trends in seasonal means and standard deviations of future model data are preserved

using the proposed method, while bias-correction via EQM causes statistical artifacts

at extreme quantiles and results in a distortion of the seasonal standard deviation

trend over time. While we apply the proposed method to calibrate daily maximum

temperature simulations generated by a climate model, principles of this method,

especially the use of process convolutions for adjusting temporal dependence, have a

wide range of applications.

4.2 Introduction

Numerical models are widely used for simulating physical, atmospheric, and other

Earth processes such as climate, ozone [181], CO2 [182], PM2.5 [183], and wind [184].

General circulation models (GCMs), generate simplified, numerical representations

of the Earth’s climate system [185], [186] and are crucial for understanding future
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changes in climate processes. Output from from GCMs is routinely used for local en-

vironmental regulatory purposes and decision making [186] as well as climate-impact

models [4]. However, GCMs can only resolve large-scale (100-200km) climate patterns

and processes, so GCM simulations are of limited use for modeling applications at

local or regional scales [5], [8]. For instance, ecological [40] and biological modeling

such as forecasting changes in species distributions [187] and investigating ecosystem

responses to a changing climate [188], require climate data products at fine spatial

and temporal resolutions [11], [121] to capture the the relationships between living

organisms and complex landscapes elements over time [187].

Before output from numerical climate models can be used in other modeling ap-

plications, it is typically calibrated with respect to observations and transformed to a

finer spatial resolution in post-processing steps called bias-correction and downscaling,

respectively. During downscaling, simulations from numerical models are transformed

from a coarse to finer spatial resolution. Downscaling leverages fine-scale information,

such as topography and elevation, to add value to the original outputs [5]. Statistical

downscaling involves establishing statistical relationships between coarse-scale climate

variables and local, observed data [122]. Statistical downscaling is computationally

efficient, can be applied to different types of model output [21], and is especially useful

in topographically complex terrain [10]. One drawback is that a substantial amount

of observational data is necessary to derive statistical relationships, which may not

always be available [14].

The bias-correction of numerical model output is a particularly challenging prob-

lem. Uncertainties in GCM output can arise from the simplification and limited

understanding of climate processes and the temporal and spatial discretization of
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continuous processes [185], [186], as well as future emissions scenarios [189]. Con-

sequently, model output is characterized by some degree of systematic bias. The

definition of bias may depend on the application but generally refers to discrepan-

cies in properties (e.g. mean, variance, total rainfall, length of extreme heat days)

between model and observed data [189]. During bias-correction, distributional prop-

erties (first, second, and potentially higher moments) of climate model output are

corrected using observed data [8], [9]. The correction of future model output is in-

formed by relationships between observed and model data over an often relatively

short calibration period for which observations are available, whereas future climate

projections are generated over periods of about 100 years. While it is generally

agreed that model output in the future period should be bias-corrected to some ex-

tent [190], the reliability of future climate data, and the degree to which the future

climate change signal (CCS) should be bias-corrected, has been debated [115], [189].

The CCS is defined as a measure of additive or multiplicative discrepancies between

model statistics in future and calibration time periods [189]. The reliability of the

CCS depends largely on the assumption of the stationarity of model biases over time

[99], [105]. The so-called stationarity assumption implies that the correction applied

during the calibration period will also be sensible in the future period. However, it

has been shown that model biases may be non-stationary [7], [47], [105], [113], [114].

Despite uncertainty regarding stationarity of model biases and the degree to which

future model simulations should be bias-corrected, there is a broad agreement that

the applied correction should minimize distortions to the CCS [47], [113], [190].

Quantile-mapping (QM)-based methods are frequently used for bias-correction

[22], [53], [73], [165]. In QM-based methods (also known as histogram mapping or
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histogram equalization), a transfer function (TF) maps empirical quantiles of model

data to quantiles of observed data, resulting in the correction of first, second, and

potentially higher moments of model data. QM methods may be non-parametric

(empirical quantile mapping) or parametric (distribution mapping) [46]. The flexibil-

ity and efficacy of empirical quantile mapping (EQM) make it a common choice for

bias-correction [22], [53], [61], although its flexibility can cause overfitting on calibra-

tion data [8], [100]. Most bias-correction methods, including QM, operate under the

stationarity assumption [113], [190]. Consequently, QM-based methods generally do

not preserve the CCS [18] and may result in statistical artifacts or distortions to the

CCS, especially at extreme quantiles [47]. Ultimately, these distortions can introduce

greater uncertainty into bias-corrected data. In addtition, QM-based bias-correction

methods cannot correct biases in temporal variability except for those at annual scales

[191]. Various “trend-preserving” variants of EQM can account for non-stationarity

of model errors and preserve the CCS [47], [73], [113], [116]. Generally, in these

methods, bias-correction is still achieved by mapping model quantiles to observed

quantiles, except that the difference (or ratio) of quantiles in calibration and future

periods is incorporated into the process [47].

The correction of biases in temporal dependence has also received attention in the

literature. Temporal dependence refers to the correlation of observations at previous

and future times. In nested bias-correction (NBC) [91]–[93], temporal biases at mul-

tiple, pre-defined time scales are corrected. For instance, [91] used NBC to correct

the mean, standard deviation, and lag-1 autocorrelation of daily GCM precipitation

simulations at annual and monthly scales. In an extension to NBC, [94] performed

the correction at daily, monthly, seasonal, annual, and tri-annual timescales. Though
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the nested approaches in [91] and [94] resulted in better representation of tempo-

ral structures of GCM simulations compared to EQM, these approaches assume a

temporal dependence structure (e.g. lag-1 linear autoregressive model) as well as

stationarity of model errors and require the modeler to select the temporal scale(s)

in which the correction should be reflected. Bias-correction of temporal dependence

has also been performed by signal processing techniques. [95] used the Fast Fourier

Transform to decompose observed and model time series; temporal dependence was

then corrected via EQM in the frequency domain. This approach assumes stationarity

of model errors, which may limit its use for bias-correcting future model simulations.

In a trend-preserving approach, [96] decomposed observed and model time series us-

ing the discrete wavelet transform (DWT) and corrected biases in mean, standard

deviation, and temporal variability in the frequency domain.

We propose a bias-correction approach that is similar to those proposed by [95]

and [96] in that the method incorporates a signal processing technique (in this case, a

process convolution approach) to correct biases in temporal dependence. Process con-

volution modeling has been applied to a variety of environmental problems, including

the spatiotemporal modeling of ocean temperatures [192], dioxin concentrations [193],

and fine air particulates [194]. To our knowledge, a process convolution approach has

not been used for bias-correction. A process convolution approach is attractive for this

purpose, because it allows for greater flexibility in the decomposition of component

frequencies of a signal, and the correction is straightforward to apply. The proposed

method corrects periodic and/or non-periodic temporal dependence of model output

at various timescales via a process convolution approach; biases in seasonal means

and standard deviations are corrected with linear transformations. The proposed
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method ensures a smooth transition from the calibration to future time period in

corrected model output and minimizes distortions to the CCS. As part of a high-

resolution downscaling and bias-correction workflow, we apply the proposed method

to historical (1976-2005) and future (2006-2099) daily maximum temperature sim-

ulations from a regional climate model. We compare the proposed method to the

QM-based method, EQM, and evaluate the abilities of both methods in correcting

distributional characteristics of model output in historical and future time periods.

While we apply the proposed methods in the context of bias-correction, principles

of the method, especially the process convolution approach for adjusting temporal

dependence of signals, are generalizable to other variables or modeling applications.

This article is organized as follows: first, we introduce the study area and data.

Next, we discuss the process convolution approach for adjusting biases in temporal

dependence as well as the linear transformation approach to correct seasonal means

and standard deviations of model data. Finally, we compare the performance of the

proposed method to EQM and and discuss the implications.

4.3 Methods

4.3.1 Data

The study area, the Lake Champlain Basin, consists of parts of Vermont, New Hamp-

shire, eastern New York and southern Quebec, Canada (Figure 4.1). Eleven water-

sheds drain into Lake Champlain, and the Green Mountains, Adirondack Mountains,

and White Mountains span portions of the region [31].
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Historical daily climate station data was obtained from the Global Historical Cli-

mate Network (GHCND) (https://www.ncdc.noaa.gov/cdo-web/search?datasetid=

GHCND). GHCND data records are adjusted to account for changes in instru-

mentation and other anomalies [74], [82]. We retained only those stations with at

least 70% complete records over the historical time period 1976-2005 (78 stations).

We chose to use station data, rather than gridded data products (e.g. Livneh, [76];

Daymet, [77]; and PRISM, [78]), because interpolation algorithms used to create grid-

ded climate products can introduce bias [79] and additional uncertainty when used

for bias-correcting climate model output [80]. Gridded climate products can also

misrepresent the variability of climate variables [195]. Station data represent direct

climatological measurements and are available throughout the Northeast [82] [83].

We acknowledge that there is a spatial misalignment between gridded model data

and point-based GHCND station data. In the study region, elevation has the most

significant impact on temperature. The WRF model accounts for elevation at a 4km

spatial resolution, which is adequate to capture the main effects of elevation within

the study region. In addition, the effect of fine-scale (1km) elevation is incorporated

via topographical downscaling ([31]), adding further value to model data. There are

numerous studies in the bias-correction literature that treat point-based station and

downscaled model data as equivalent (e.g [63], [66], [86]).

Daily historical (1976-2005) and future (2005-2099) simulations of two-meter max-

imum air temperature (TMAX) were generated by the Advanced Weather and Re-

search Forecasting model (WRF) version 3.9.1, a regional climate model (RCM)

[128]. WRF is a widely used numerical weather prediction system for both re-

search and applied forecasting purposes [128]. Historical simulations (1976-2005)
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were forced by bias-corrected Community Earth System Model 1 (CESM1) [167] un-

der the RCP8.5 emissions scenario, which represents the “worst case” emissions sce-

nario [196]. CESM1 historical simulations were dynamically downscaled with WRF

to a 4km resolution using three one-way nests (36 km, 12 km, 4km). The 4km reso-

lution WRF data were used for this study. A total of 4347 4km WRF grid cells cover

the study area. WRF grid cell values represent averages over a 4km x 4km area.

Additional WRF model details are included in the Supplementary Materials and a

full description and evaluation of simulations can be found in [130]. Output from the

WRF model will be referred to as “model data” or “model output”.

WRF model data are characterized by a pronounced daily mean cold bias during

colder periods of the year (approximately days 1-100 and 300-365) compared to ob-

served data (Figure 4.2a). Over the same periods, the variance of WRF model data

is larger compared to station observations; during warmer periods (days 120-250) the

reverse is true (Figure 4.2b).
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Figure 4.1: GHCND stations (black) within the study area (red). The size of the study area
is approximately 13,251km2.
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Figure 4.2: Daily means (◦C) (a) and standard deviations (SD) (◦C) (b) of WRF model
(Mod) and observed data (Obs) over day of year (DOY) over 1976-2005. Means and SDs
are calculated using WRF model data downscaled to the 78 GHCND station locations and
GHCND station data.

4.3.2 Modeling

Historical and future model data are topographically downscaled to the 78 GHCND

station locations for the purposes of constructing statistical models and calculat-

ing performance metrics. Topographic downscaling is a variation of inverse distance

weighting (IDW) that can account for fine-scale topography via the incorporation

of elevational lapse rates [31] (full details on topographic downscaling are provided

in the Supplementary Material). To construct data products, model data were also

downscaled to a 1km grid. Elevation estimates at each 1km grid cell were derived

by interpolating elevation values from a 30m digital elevation model (DEM) [131]
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via IDW, while elevations at GHCND station locations were derived from GHCND

metadata [74]. The 1-km grid cell size was chosen based on resolution requirements

for climate impact modeling efforts over the Lake Champlain Basin [31], [132]. The

use of topographical downscaling is a simple, yet highly effective way to account for

the effect of elevation on temperature variables and provides a spatial adjustment

prior to bias-correction.

The proposed bias-correction method consists of two parts: a process convolution

approach is used to correct the temporal dependence of model data and a series of

linear transformations is employed to correct biases in seasonal means and standard

deviations of model data. We refer to the proposed method as Distribution Modifi-

cation with Temporal Dependence Adjustment (DMTA). However, the adjustment in

temporal dependence is independent of the correction of distributional discrepancies

in model data.

DMTA bias-correction consists of the following steps. It is important to note

that the correction of temporal dependence and distributional bias is carried out on

spatially-averaged data. The last step of the process involves adjusting spatially-

explicit data to match the corrections made at the spatially-averaged scale.

1. Time series of daily, spatial averages for model and observed data over the 78

station locations are obtained for the historical and future time periods. The

time series of model data will span historical and future time periods (1976-

2099) (section 4.3.3).

2. Spatially-averaged time series from step 1 are processed such that both time

series have seasonal means of 0 and standard deviations of 1. The removal

of any seasonal or long term trends, as well as patterns in seasonal variance, is
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necessary to obtain robust parameter estimates when fitting process convolution

(PC) models (section 4.3.3).

3. PC models are fitted to processed, observed and model time series obtained in

step 2. Using estimates from PC model fits, the model time series is adjusted

such that the temporal dependence matches that of the observed time series

(sections 4.3.4 and 4.3.5).

4. The results from step 3 are back-transformed by reversing the data process-

ing steps in step 2. However, in the back-transformation, seasonal means and

standard deviations (SDs) obtained from observed data are used, ensuring that

back-transformed model data has seasonal means and SDs similar to those of ob-

served data. The resulting back-transformed data represents spatially-averaged

model data in which bias in temporal dependence and distribution (mean and

SD) have been corrected (section 4.3.6).

5. To reflect the bias-correction of temporal dependence and distribution at spatially-

explicit model values, a series of linear transformations is applied. After these

linear transformations, daily means and SDs of spatially-explicit model data

will reflect the bias-corrected model data obtained in step 4 (section 4.3.6).

The correction of temporal dependence is carried out separately from the correction

of bias in means and SDs. This means that the process convolution approach for

correcting temporal dependence could be applied within other bias correction methods

(such as EQM) or in other applications entirely. The correction of bias in means and

SDs may also be performed without the correction of bias in temporal dependence.

Figure 4.3 shows the workflow of the DMTA bias-correction method as a schematic.
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The following sections will describe in detail the processing steps for model and

observed data (4.3.3), the process convolution approach for adjusting temporal de-

pendence (4.3.4 and 4.3.5), and the final linear transformation necessary to adjust

daily spatially-explicit model data (4.3.6).
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Figure 4.3: Workflow of the DMTA bias-correction method.154



4.3.3 Data processing

In the following sections, subscripts Obs and Mod will refer to observed and model

data, and hist and fut subscripts will denote historical and future time periods. ϵ and

µ are used to denote residual errors and means, respectively, and the subscript w will

refer to residual variance. Subscripts will be utilized frequently to distinguish between

parameter estimates related to observed or model data in future and historical time

periods.

Let TObs and TMod denote spatially-averaged observed and model data, respec-

tively. TObs represent the historical period (1976-2005), while TMod span years 1976-

2099. TObs and TMod are processed according to (4.1) and (4.2), where WMod and

WObs are the resulting time series with seasonal means of 0 and SDs of 1.

WMod =
(TMod − ϕMod,hist − δMod)

αMod

× 1
cMod

(4.1)

WObs = (TObs − ϕMod − δObs)
αObs

× 1
cObs

. (4.2)

In (4.1) and (4.2), δMod and δObs are vectors of seasonal means and αMod and αObs

are vectors of seasonal SDs, where elements of these vectors repeat every 365 values.

The vectors δ(·) and α(·) contain estimated daily mean and standard deviation values

for each day in a 365-day year (Figure 4.4) (the model for estimating δ(·) and α(·) is

described below). cObs and cMod are constant scalars that scale the SD of the time

series to be approximately 1. Scaling constants cObs and cMod were calculated after

dividing by α(·) and reflect the mean median absolute deviation (MAD) over a sliding

window of length 100. ϕMod is the long-term estimated daily mean trend in TMod.
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Figure 4.4: Fitted seasonal means (δ(·)) (◦C) (a) and SDs (α(·)) (◦C) (b) of WRF model
(Mod) and observed data (Obs) via the HetGP model.

The long-term daily mean trend of TMod was estimated using a cubic regression

spline with calendar day as the predictor variable. The number of knots (50) in the

spline was chosen using the likelihood ratio test. Spline models were fitted using

the mgcv package [197] in R. Estimation of ϕMod (4.5) over the entire time period

(1976-2099) is important to ensure a smooth transition from the calibration to future

time period.
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Figure 4.5: Estimated long-term daily mean trend (ϕMod) of model data (1976-2099).

SDs of TObs and TMod exhibit considerable annual variation depending on day

of year (Figure 4.2). To estimate seasonal means and SDs of TObs and TMod, while

accounting for the nonstationarity seasonal SDs, we used a heteroscedastic Gaussian

process model (HetGP) [198]. In the implementation of the HetGP model by [199],

replication is leveraged to model process noise, which also makes model fitting com-

putationally efficient. As a result, the number of input locations is reduced from

N to n, where n << N . The HetGP model is similar in idea to stochastic kriging

[200] but is advantageous because estimates for variance and lengthscale parameters

are obtained using maximum likelihood. Essentially, a HetGP is used for Gaussian

process regression, except that process noise is allowed to vary over input space.
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In a HetGP model, latent variance variables are used in lieu of a single nugget

parameter. Let τ1...τn denote latent nuggets for n unique input locations. The τi

are stored in a diagonal matrix ∆n, and a GP prior is specified for their distribution

[199]:

∆n ∼ N(0, ν(Cn + gA−1)). (4.3)

In (4.3) ν is a scale parameter, Cn is a positive-definite correlation matrix, g is a

nugget, and A is a diagonal matrix containing the number of replicates at each of

the unique n locations. To obtain smoothed values of λi, ∆n is inserted into the GP

prediction equation for the mean:

Λn = Cn(Cn + gA−1)−1∆n.

Here, g is an overall nugget and controls the smoothness of the λi relative to the τi.

We refer readers to [199] for a thorough description of HetGP modeling.

HetGP models were fitted to TObs and TMod (after subtraction of ϕMod) using the

mleHetGP function with the HetGP package [199] in R. Periodicity of δ(·) and α(·)

were enforced during HetGP model fitting (see Supplementary Material for additional

details). The resulting δ(·) and α(·) fitted by the HetGP model were adequately

smooth and periodic, as required (Figure 4.4).

4.3.4 Process convolution modeling

Process convolution models represent a flexible and computationally efficient method

for Gaussian process modeling [192]. In this study, we apply process convolution
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modeling as an alternative to other signal decomposition procedures such as the

discrete Fourier transform (DFT) or discrete wavelet transform (DWT) to gain insight

into differences in temporal dependence between TObs and TMod. In a PC approach,

it is straightforward to determine if differences in temporal dependence exist between

model and observed data. In addition, multivariate Gaussian process theory can be

utilized to adjust model time series such that temporal dependence is similar to that

of observed data.

Similar to the DFT or DWT, a PC can be used to decompose a time series into

component frequencies. All three approaches are similar in that each decomposes

a signal into a set of basis functions. One major disadvantage of the DFT is that

information regarding time is lost, as the Fourier transform is an integral over time

[201]. In addition, the Fourier transform is exclusively based on sine and cosine basis

functions, which may be limiting for some types of signals. The DWT can decompose

signals composed of periodic or non-periodic frequencies in which variation changes

over time [201]. Though the DWT can represent a greater diversity of composite

frequencies, the frequencies are typically represented by a dyadic scale. In a PC

approach, a signal is decomposed via basis functions [192] that are specified by a

defined kernel and its parameters. Though the Gaussian kernel is frequently used,

others (e.g. spherical, exponential) also exist [192]. Parameters controlling the length

scale are explicitly chosen to represent temporal frequencies present in a signal. The

need to explicitly specify kernel parameters is not always an advantage, but it does

allow for greater control over how signals are decomposed. Standard Gaussian process

theory can then be used to adjust temporal dependence of composite frequencies.

The framework underlying PC modeling is the Gaussian process (GP), a proba-
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bility distribution over possible functions. A flexible and efficient way to specify a GP

z(t) is by convolving a white noise process x(t) with a smoothing kernel k(t) [202]:

z(t) =
∫

T
k(u − t)x(u)d(u), for t ∈ T, (4.4)

for time t. The covariance function for z(t) is only dependent on the distance vector

(d = t − t′):

c(d) = Cov(z(t), z(t′)) =
∫

T
k(u − t)k(u − t′)du =

∫
T

k(u − d)k(u)du.

The process z(t) is a 0-mean GP and is defined by specifications for the latent process

x(t) and the smoothing kernel k(t). In practice, the theoretically continuous process

z(t) (4.4) is discretized, and the latent process x(t) is specified to be non-zero at

“knot” locations ω1 . . . ωm ∈ T .

Let x = (x1 . . . xm)T where xj = x(ωj), j = 1 . . . m and let xj ∼ N(0, σ2
xj

). The

knots, ωj, anchor the process z(t) at specific locations. The process z(t) can be

expressed as

z(t) =
m∑

j=1
xjk(t − ωj).

Thus, z(t) is a 0-mean GP in which Cov(z(t), z(t′)) = σx
∑m

j=1 k(t − ωj)k(t′ − ωj) and

KKt = Σz, where Kij = kj(ti). The discrete representation of z(t) provides a good

approximation to the continuous process, as long as the distance between knots is no

larger than the standard deviation of the smoothing kernel k(·) [202], [203].

In this study, k(·, −ωj) is the Gaussian basis kernel centered at ωj:

kj(t) ∝ 1/
√

2π exp(−1/2(t − ωj)2).
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Let w = (w1 . . . wn)T be observations recorded at times t1 . . . tn ∈ T . w can be

modeled in a regression context as:

w = Kx + ϵ, (4.5)

where K is a basis matrix. The elements in the basis matrix K are given by Ki,j =

kj(ti − ωjxj), x ∼ N(0, σ2
xj

), and ϵ ∼ N(0, σ2
ϵ In).

Model (4.5) can also be extended to incorporate multiple temporal resolutions

[202]. In this approach, multiple resolutions can be captured by adjusting the length-

scale parameter of k(s). Since we use the Gaussian kernel in this application, the

kernel standard deviation can be narrowed and widened to capture fine- and large-

scale resolutions, respectively. z(t) is expressed as the sum of p processes:

z(t) =
p∑

ℓ=1
zℓ(t).

Each of the p processes can be expressed as:

zℓ(t) =
mℓ∑
j=1

xℓjk(t − ωℓj),

where mℓ is the number of knots in Kℓ. Thus, each zℓ(t) captures additional detail.

In the context of a multi-resolution PC, the regression model is:

w =
p∑

ℓ=1
Kℓxℓ + ϵ, (4.6)

which reduces again to w = Kx + ϵ (4.5), where

161



x =


x1

...

xp


and

K = [K1 . . . Kp]

ϵ ∼ N(0, σ2
ϵ In)

xℓ ∼ N(0, σ2
xℓ

Imℓ).

The elements of Kℓ are given by Kℓ
ij = k(ti − ωℓj

).

The multi-resolution PC is ideal for modeling processes composed of multiple sub-

processes that may be periodic or non-periodic. To minimize edge effects, in fitting

(4.5) it is important that basis matrices are constructed correctly. To minimize edge

effects of non-periodic basis matrices, kernels were initiated at 2.25 × σ2
xℓ

and were

extended to n + 2.25 × σ2
xℓ

, where n was the number of days used in model fitting,

and σ2
xℓ

is the variance of xℓ. All basis matrices were standardized relative to a

Normal(0, σ2
xℓ

) distribution according to (4.7), such that the resulting covariance

matrix ( KℓKℓT ) had marginal variances of 1, which is assumed in model 4.5.

Kℓ∗

i,j = 1
σxℓ

√
2πe

− x
σxℓ

/ω; (4.7)

ω =
√

max(Kℓ∗(Kℓ∗)T ) (4.8)
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A Bayesian approach to fitting model (4.5) requires the specification of a likelihood

function for w and priors for λx = 1/σ2
xℓ

and λw = 1/σ2
w:

L(w|x, λw) ∝ λn/2
w exp(−1

2(w − Kx)T λw(w − Kx)).

Priors, denoted by π(·), are designated as follows [192]:

π(x|λx) ∝ λm/2
x exp(−1

2λxΛxxT )

π(λx) ∼ λax−1
x exp(−0.0001λx)

π(λw) ∝ λaw−1
w exp(−0.0001λw),

Here, λx is the precision (inverse variance) of xℓ, ℓ = 1 . . . p. In addition, λϵ is the

precision of w, Γ denotes the Gamma distribution, and

Λx =


λ1Im1 0 0

0 . . . 0

0 0 λpImp

 .

The posterior conditional distributions of x, which is of most interest here, is given

by:
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x|λx, λw, w ∼ N(µ, V), (4.9)

µ = (λwKT K + Λx)−1λwKT w, (4.10)

V = (λwKT K + Λx)−1. (4.11)

We fit the multi-resolution PC model (4.5) as a random effects model in which

estimates of λx, and λw were obtained with maximum likelihood. Maximum likelihood

was computationally more efficient than MCMC sampling, but given a large enough

sample size, both approaches yield similar estimates [204]. PC models were fitted

using the lme function from the nlme package in R [205].

Model (4.5) was fitted to WMod and WObs; however, WMod was fitted in 30-year

increments (1976-2005, 2006-2036, 2037-2067, and 2068-2099) due to computational

limitations. Initially, PC models were fitted to WMod and WObs during the historical

period, where K was composed of basis matrices with the following kernel standard

deviations: 3.5, 7, 14, 21, 28, 35, 42, 48, 56, 73, 79, 100, 120, 140, 180, 210, and

1825 days. Based on exploratory analyses, we only included basis matrices repre-

senting non-periodic temporal trends at 180- and 3.5-day frequencies (e.g., Gaussian

kernel standard deviations were 180 and 3.5 days). Gaussian kernel bases constructed

with standard deviations of 180 and 3.5 days capture component processes relatively

large (180-day) and fine (3.5-day) resolutions, respectively. In other words, Gaussian

kernel bases constructed with standard deviation m can model component processes

in which the covariance matrix is characterized by an m−day lengthscale parameter

(the covariance matrix for any component process zℓ(t) = KℓKT
ℓ ). (We found that

164



estimates of σ2
xℓ

representative of all other temporal frequencies were nearly zero, and

this was consistent for WObs and WMod).

4.3.5 Process convolution approach for adjust-

ing temporal dependence

Although PC model specification is facilitated by the use of precision rather than

variance, we shall discuss inference using variance of the xℓ (σ2
xℓ

).

It is clear from model (4.5) that elements of xℓ influence the relative importance

of temporal trends represented by the Kℓ. If a temporal trend, zℓ(t) = Kℓxℓ, is not

well-represented, zℓ(t) is near 0, which means σ2
xℓ

is also near 0. Conversely, if some

temporal trend zℓ(t) is well-represented in the signal, σxℓ
will be nonzero. Thus,

inference is focused on extracting information about the variance of the xℓ (σ2
xℓ

) and

ultimately the posterior conditional distribution of x. The goal in this section is

to reconstruct an adjusted version of WMod by scaling PC model fitted values and

residual variance using estimates of σ2
xℓ,Obs

and σ2
w,Obs, so that WMod exhibits temporal

dependence characteristics of WObs. After PC models were fitted to WObs and WMod,

estimates of σ2
xℓ,Obs

and σ2
xℓ,Mod

, as well as estimates of residual variances, (σ2
w,Obs and

σ2
w,Mod), were obtained. Posterior conditional means of x for PC models fitted to

WObs and WMod were obtained using (4.10).

Next, the ratios between σ2
xℓ,Obs

and σ2
xℓ,Mod

is calculated as:

rℓ =
σ2

xℓ,Obs

σ2
xℓ,Mod

× c∗,

where c∗ = 0.96 is a scaling constant necessary to obtain correct estimates of σxℓ
when
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rℓ > 1. The scaling constant c∗ is required, because the scaling of µx,Mod by the rℓ does

not act linearly on variance. [206] showed that in random effects models (such as the

PC implementation in this study), variances of random effects do not scale linearly.

We found that adjusting rℓ by c∗ = 0.96 resulted in a satisfactory adjustment of

σxℓ
. Since the technique presented here has not been used in the literature, we found

that determining an appropriate value for c∗ = 0.96 required testing values until we

obtained the desired change in σxℓ
. rℓ near 1 indicate that the strength of a component

temporal process is present in similar magnitudes in observed and model data. Ratios

greater than 1 indicate the magnitude of the component process is greater in WObs

compared to WMod, and the opposite is true for ratios less than 1. The temporal

dependence of WMod is adjusted using results from model (4.5) fitted to WObs only

during the historical period.

The ratio of residual variances σ2
w,Obs and σ2

w,Mod is calculated as:

rw =
σ2

w,Obs

σ2
w,Mod

The posterior mean of xMod (µx,Mod) is adjusted using the following expression:

µ̃x,Mod = µx,Mod ×


R1 0 0

0 . . . 0

0 0 Rp

 ,

where R1 . . . Rp are diagonal matrices with diagonal elements r1 . . . rp.

Next, adjusted residuals of the PC model fitted to WMod are calculated as:

ϵ̃Mod = (WMod − Kµx,Mod) × rw. (4.12)
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Now, the adjusted version of WMod (W̃Mod) is constructed by adding adjusted resid-

uals (4.12) to adjusted fitted values (4.13):

W̃Mod = Kµ̃x,Mod + ϵ̃Mod. (4.13)

The adjustment of temporal dependence may result in the increase or decrease of

the overall variance of W̃Mod with respect to WMod, which may be undesirable. This

can be resolved by performing the data processing steps again outlined in section

4.3.3 and obtaining new estimates of δMod, αMod, ϕMod, and cMod.

4.3.6 Correction of spatially-explicit model data

The previous section describes how a process convolution approach can be utilized to

assess temporal dependence within WMod and WObs and how WMod can be adjusted

such that it exhibits temporal dependence characteristics of WObs. However, up to

this point, only the temporal dependence of W̃Mod, which is at the spatially-averaged

scale, has been corrected; distributional properties of W̃Mod must also be corrected,

and ultimately, those changes must be reflected in spatially-explicit model data. First,

a back-transformation is applied to W̃Mod so that the data is at the “TMAX” scale.

This back-transformation ensures that the seasonal means and SDs of the resulting

back-transformed time series are the same as those of observed data. The back-

transformation is performed as follows:

1. W̃Mod is multiplied by the constant scalar obtained from observed data during

the calibration period, cObs.

2. The result from step 1 is multiplied by the seasonal SD trend of observed data,
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αObs.

3. The long-term model trend ϕMod as well as the seasonal mean trend from ob-

served data, δobs, are added to the result from step 2.

These steps can be expressed as:

T̃Mod = W̃Mod × cObs × (αObs) + δObs + ϕMod, (4.14)

where T̃ Mod is bias-corrected, spatially averaged model data. The back-transformation

in (4.14) ensures that seasonal means and standard deviations of T̃Mod match those

of TObs, while the long-term term daily mean trend of TMod is preserved.

The final step in bias-correcting spatially-explicit model data involves another se-

ries of linear transformations applied to spatially-explicit model values. Linear trans-

formations are applied to model data that have been topographically downscaled to

the 78 GHCND station locations (or the fine-scale grid for the construction of high-

resolution data products). The final linear transformation is applied to N locations

(GHCND station locations or fine-scale grid cells) for each day t, t = 1 . . . T in histor-

ical and future time periods. Each uncorrected, downscaled model value at location

i, i = 1 . . . N is corrected using the following linear transformation:

Tcorri,t
= b × TModi,t

+ a,

a = T̃Mod,t − TMod,t × αObs,t

αMod,t

,

b = αObs,t

αMod,t

, (4.15)
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In (4.15) Tcorri,t
is the corrected daily model value at grid cell i and day t. TModi,t

is the

uncorrected model value at location i and day t; T̃Mod,t is the value of T̃Mod on day t,

TMod,t is the value of TMod on day t. The final linear transformation ensures that the

daily spatially-averaged means and standard deviations of fine-scale grid-level model

data matches those of corrected model data, T̃Mod, for all t ∈ T .

4.4 Validation and performance assess-

ment

To quantify performance of the proposed method in correcting biases in the mean

and SD, we compared it against EQM, a widely-used method for bias-correction.

We implemented EQM and DMTA with and without the adjustment of temporal

dependence.

4.4.1 Empirical quantile mapping

Bias-correction via empirical quantile mapping (EQM) is accomplished with monthly

transfer functions (TFs), where each TF represents a mapping from empirical model

quantiles to observed empirical quantiles for a particular month. The EQM TF is

expressed by the empirical cumulative distribution function (ecdf) and its inverse

(ecdf−1).

Tcorri,t
= ecdf−1

Obs,m(ecdfMod,m(TModi,t
)). (4.16)
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In (4.16), Tcorri,t
is the corrected model TMAX value at location i on day t, ecdf−1

obs,m

is the inverse ecdf of TObs for month m, and ecdfMod,m is the ecdf TMod for month m,

and TModi,t
is the (uncorrected) model value of TMAX at location i on day t. Monthly

TFs were constructed using daily, spatially-explicit model and observed data from the

calibration period for a given month. For each of the twelve TFs, 10,000 quantiles

were estimated between 0 and 1; interpolation of the quantiles was accomplished with

monotone Hermite splines using the qmap package [102] in R. For each month, the

same TF was used to bias-correct all daily model data at the 78 station locations.

Figure 4.9 shows an example of an EQM TF for month 12 and how it is used to

transform model quantiles.

4.4.2 Evaluation of performance

The effectiveness of the process convolution approach for adjusting temporal depen-

dence was assessed by comparing estimates of σxℓ
and σw from PC models fitted to

WObs, WMod, and W̃Mod. We report results on the SD, rather than variance scale

for ease of interpretation. We also show results for PC models fitted to WMod and

W̃Mod over the four time periods (1976-2005, 2006-2036, 2037-2067, and 2068-2099)

to assess the stationarity of temporal dependence over time.

4.4.3 Evaluating effectiveness of bias-correction

We implemented DMTA and EQM with and without correction of temporal depen-

dence so as to achieve a fair comparison between the two methods. DMTA without

temporal adjustment can be accomplished simply by following the data processing

170



steps (section 4.3.3) and applying the final linear transformation (4.15) to spatially-

explicit model data (the process convolution approach is omitted). The implemen-

tation of EQM with temporal adjustment is discussed in Supplementary Material.

EQM without temporal adjustment was done using daily, spatially-explicit model

and observed data (4.16).

To assess how well both EQM and DMTA performed with respect to correcting

model biases, we implemented two 10-fold cross validations (to account for cases in

which temporal dependence was and was not corrected) during the calibration period

(1976-2005). In the cross-validations, test datasets always consisted of consecutive

years. A cross-validation allows for determining the suitability of a bias-correction

method for future data, as out-of-sample data can be viewed as proxies for future

data.

Cross-validation Two separate cross-validations were carried out for model data

bias-corrected by EQM and DMTA, with and without temporal adjustment. For

DMTA, model data during the historical calibration period (1976-2005), as well as

all 10 training sets of observed data were processed according to steps in section

4.3.3 and fitted to model 4.5. During cross-validation, estimates of σ2
xℓ,Obs

and σ2
w,Obs

corresponding to each observed training set were used to adjust temporal depen-

dence of model data in corresponding test sets following steps in section 4.3.5. αObs

and δObs were estimated from observed training sets and were used in the back-

transformation of corresponding model data in test sets (4.14). Finally, (4.15) was

applied to (spatially-explicit) model data in test sets. Cross-validation for EQM with

temporal adjustment is discussed in Supplementary Material.

When temporal dependence was not adjusted, cross-validation was carried out as
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follows. First, model data over the calibration period were processed as described in

section 4.3.3. For DMTA, in each fold, αObs and δObs were estimated from observed

training sets and used in the back-transformation of model data (4.14) in test sets.

For EQM, spatially-explicit model and observed data were designated into training

and testing sets for each fold. Model data in test sets were bias-corrected on a monthly

basis using observed and model data in training sets.

Distributional similarity (model skill) of bias-corrected model and observed data

was quantified with the mean absolute error (MAE) (4.17). MAE is often used in the

climate literature to assess the performance of bias-correction methods [61].

MAE = 1
n

n∑
i=n

|Oi − Mi| (4.17)

In (4.17), Oi is ith observed quantile, Mi is ith model (or bias-corrected model) quan-

tile, and n is the total number of quantiles. MAE values were calculated using 1,000

estimated quantiles on the interval [0, 1]. MAE values were calculated by day of year

(1-365), and final MAE values are reported as the average value over all 10 cross-

validation folds. MAE is bounded on [0, ∞), where lower values of MAE indicate

greater distributional similarity to observed data.

Performance was computed between raw model and observed data as well as be-

tween bias-corrected model and observed data in test sets for each fold. Numerical

models are typically evaluated on their ability to simulate long-term climatology [189].

Climate model output over the historical period cannot be compared to observations

on a daily basis, so metrics that quantify distributional similarity were chosen, rather

than error metrics that quantify day-to-day errors.
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4.5 Results

4.5.1 Correction of temporal dependence

Estimates of σx180 were very similar for model, temporally-adjusted model, and ob-

served data. For unadjusted model data, estimates of σx3.5 were slightly lower (σ3.5 =

0.81 to 0.87) than that of observed data (σ3.5 = 0.98) (Table 4.1). The consistently

higher estimate of σx3.5 for observed compared to model data indicates that temporal

dependence of observed data at a fine temporal resolution (3.5 days) is slightly greater

than that of model data. Estimates of σxw of model data (σxw = 0.7072 − 0.7705)

were slightly greater than that of observed data (σxw = 0.7049) (Table 4.1). Following

temporal adjustment, all estimates of σx3.5 and σxw were similar to those obtained

from models fitted to observed data (Table 4.1).

The correction of temporal dependence of model data is based on estimates of σxℓ

from observed data during the calibration period, 1976-2005. Thus, this approach

assumes that the σxℓ
are stationary over time. We found that estimates of σxℓ

obtained

from PC models fitted to model data varied little over the four time periods during

which PC models were fitted. This indicates that the temporal dependence of model

data appear to be stationary over time. We also investigated if other kinds of temporal

dependencies appeared in future data, but we found no notable changes.
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Table 4.1: Estimates of σx3.5, σx180, and σw from PC models fitted to processed observed
(Obs), unadjusted model (Mod), temporally-adjusted Mod (ModTA) for historical (1976-
2005) and future (2006-2036, 2037-2067, and 2068-2099) time periods.

Data type σx3.5 σx180 σw

Obs: 0.9817 0.0002 0.7049
Mod: 1976-2005 0.8771 0.0011 0.7705
Mod: 2006-2036 0.8751 0.0002 0.7529
Mod: 2037-2067 0.8189 0.0002 0.7503
Mod: 2068-2099 0.8524 0.0003 0.7072
ModTA: 1976-2005 0.9757 0.0005 0.6999
ModTA: 2006-2036 0.9791 0.0002 0.6995
ModTA: 2037-2067 0.9840 0.0002 0.6985
ModTA: 2068-2099 0.9670 0.0002 0.7013

4.5.2 Correction of seasonal means and stan-

dard deviations

MAE values resulting from model data with and without the correction of temporal

dependence did not differ appreciably (see Figure S2 in Supplementary Material),

indicating that correction of temporal dependence of model data does not adversely

affect the correction of distributional characteristics. For uncorrected, EQM-, and

DMTA-corrected model data, MAE values decreased between days 1 and 199 and

increased between days 200 and 365 (Figure 4.6).

MAE values for uncorrected model data were noticeably greater than those for

EQM- and DMTA-corrected model data during colder periods of the year (between

days 1 and 100 and days 280-365), indicating that in colder periods, the distribution of

model data is less similar to observed data. In the warmest periods of the year (days

150-230), MAE values of model data were slightly lower than or equal to those of
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EQM- and DMTA-corrected model data (Figure 4.6). Bias-correction via DMTA was

very effective in reducing MAE values during colder periods of the year (days 1-100

and days 280-365). However, for the same periods, bias-correction via EQM resulted

in higher MAE values than those obtained from uncorrected model data (Figure 4.6).

In warmer periods of the year (days 101-249), bias-correction via DMTA had little

impact on MAE, and during days 101-160, DMTA resulted in larger MAE values

than uncorrected model data. EQM resulted in larger values of MAE compared to

uncorrected model data over the entire warm period (days 101-249).

Overall, DMTA resulted in more consistent reductions in MAE compared to EQM

and DMTA provided improvements over uncorrected model data for most days of the

year. While EQM improved distributional properties of model data for the coldest

periods of the year, EQM resulted in greater MAE values than uncorrected model

data during warmer periods of the year. EQM was more likely to overfit on training

data during warmer periods of the year compared to DMTA.
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Figure 4.6: Cross-validated results of MAE(◦C) for uncorrected model (MOD), and EQM-
and DMTA-corrected (with temporal adjustment) data relative to observed data during the
historical period (1976-2005) over day of year (DOY). Averages over 14-day increments of
DOY are overlaid to aid interpretation.

Stationarity of seasonal means and standard deviations

While the stationarity of future model projections can generally not be assumed

[47], [113], [116], many bias-correction methods, including EQM, work under this

assumption [55]. Here we examine the stationarity of seasonal means and SDs in

relation to bias-correction via DMTA and EQM. As shown in Figure 4.5, the daily

mean of model simulations increases nonlinearly over the 124-year simulation period,

Here, we examine the stationarity of seasonal means and SDs and how bias-correction
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via DMTA and EQM affect the trend of seasonal means and SDs over time.

For uncorrected, EQM- and DMTA-corrected model data, the shapes of seasonal

means do not change over all four time periods during which PC models were fitted,

providing evidence that the seasonal mean of model data appears to be stationary

over time (Figure 4.7 a, b, and c, respectively). Figure 4.7 also shows the seasonal

mean for observed data for comparison (black dashed line). After bias-correction

via DMTA and EQM, seasonal mean trends obtained over all four time periods very

closely resemble the seasonal mean trend of observed data.

In contrast to seasonal means, the shape of seasonal SDs of model data changed

considerably over time (Figure 4.8 a). In particular, the seasonal SD trend flattens

slightly during colder periods of the year (approximately days 1-100 and days 300-

365), indicating an overall decrease in the variability of daily TMAX (Figure 4.8 a).

Though the “flattening” is apparent in the SD trends obtained from EQM-corrected

model data (Figure 4.8 b), the overall shapes of the seasonal SDs over time are sub-

stantially different from those of observed data. In addition, the progressive decrease

in the seasonal SD during colder periods over time is not preserved. In EQM-corrected

data, the SD trend is “flattest” during the period 2036-2076 (Figure 4.8 b), while for

uncorrected model data, the “flattest” SD trend occurs during the period 2067-2099

(Figure 4.8 a). After correction via DMTA the shapes of seasonal SDs over all four

periods resemble those of observed data, and the same progressive “flattening” of the

seasonal SD trend is preserved (Figure 4.8 c). Thus, not only does bias-correction

via DMTA correct bias in the seasonal SD of model data, but it also preserves the

“flattening” trend of the seasonal SD over time. Compared to EQM, DMTA better

preserves the change in seasonal SD trends exhibited in uncorrected model data, while
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also imparting characteristics of observed data.

These results imply that if the assumption of stationarity can be justified (as it

can be for the seasonal mean), bias-correction methods such as EQM perform well.

However, if the assumption of stationarity is violated (as it appears to be for seasonal

SDs), DMTA can correct biases in means and SDs in addition to adequately preserving

trends exhibited in uncorrected future model data.

Figure 4.7: Seasonal means (◦C) for uncorrected model data (a), EQM-corrected model data
(b), and DMTA-corrected model data (c) over day of year (DOY) for time periods 1976-
2005, 2006-2036, 2037-2067, and 2068-2099. Observed (Obs) seasonal means are denoted
by the dashed black line.

Figure 4.8: Seasonal standard deviations (SDs) (◦C) for uncorrected model data (a), EQM-
corrected model data (b), and DMTA-corrected model data (c) over day of year (DOY) for
time periods 1976-2005, 2006-2036, 2037-2067, and 2068-2099. Observed (Obs) seasonal
SDs are denoted by the dashed black line.
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4.6 Discussion

In this study, we developed a novel method for bias-correcting simulations from a

numerical climate model. The method features a process convolution approach for

adjusting the temporal dependence of model data, and a series of linear transforma-

tions are used to correct the distribution of model data in both historical and future

time periods. Additionally, the proposed method ensures that there is a smooth

transition in correction from the calibration to future time period and important

features of the future climate change signal (CCS), such as changes in the standard

deviation, are preserved. Even without correcting a bias in temporal dependence,

DMTA provides a more robust and realistic bias-correction of seasonal means and

SDs compared to the widely-used quantile-mapping method EQM. DMTA is also

less prone to overfitting on calibration data compared to EQM. While we apply the

proposed method to daily maximum temperature simulations from a regional climate

model, the process convolution approach for adjusting temporal dependence, together

or separate from the distributional correction component, has a wide range of appli-

cations. There are several modeling aspects of the proposed bias-correction method

that warrant further discussion. These aspects include computational resources and

considerations for process convolution models, the selection of basis matrices in PC

models and refining the temporal correction approach, and the need for an additional

spatial correction.

The process convolution approach for adjusting temporal dependence of a signal

is straightforward to implement. However, the approach has some limitations in

terms of computational complexity. Process convolution models are computationally
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expensive to fit, either as random effects models or in a Bayesian approach using

a Gibbs sampler. Matrix inversion, necessary for both fitting methods, carries a

computational cost of O(n3log2n). It is therefore not feasible to fit process convolution

models with either large numbers (> 30,000) of observations, or a large number

and/or size of basis matrices. We found that fitting 30,000 observations with basis

matrices representing short and long-term trends took approximately 8 hours on

an NVIDIA DGX-1 system. Due to the high computational intensity of fitting PC

models, it is important that only the most important component frequencies are

represented in the basis matrices. We found choosing appropriate Gaussian kernel

standard deviations for basis matrices to be a difficult task. A natural way to select

appropriate kernel standard deviations would be a group shrinkage approach such as

the group lasso or its Bayesian counterpart [207]. However, group lasso approaches

were also computationally intensive and contradicted results from PC models fitted as

random effects models and using a Gibbs sampler. We proceeded by fitting many PC

models with various kernel standard deviations and retained those for which σx were

nonzero. Further research is needed in the area of selecting kernel width parameters

for PC models. Finally, because the temporal correction via a process convolution

approach has never been done, there are some steps within the approach that should

be refined. As described in section 4.3.5, the scaling of µ̂Mod via ratios of the estimated

σxℓ
is not linear [206] and may require an additional scalar (c∗) to achieve the desired

change in temporal dependence. Here, we tested several values of c∗ before selecting

the appropriate value. Further extensions to the approach could include a better way

to select appropriate scaling constants during the temporal correction process.

DMTA provides the same correction, regardless of spatial location. Thus, when
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spatial autocorelation is encountered the need for an additional spatial correction may

arise. We considered the development of a secondary model to provide an additional

spatial correction, but for our study area we did not find evidence of any spatial

autocorrelation present in model data before or after bias-correction. The lack of

residual spatial autocorrelation could be due to several factors. First, the WRF

model accounts for topography and climate processes at the 4km scale and is therefore

capable of capturing relatively fine-scale processes that could affect temperature (e.g.

the effect of large bodies of water, elevation, topographical aspect, etc). Additionally,

the use of topographical downscaling further adjusts WRF model data to represent

the effects of fine-scale elevation. We surmise that for much larger study areas, an

additional spatial model (such as that described in Appendix A4) may be necessary

to correct biases that change over space in large-scale, complex landscapes.

While an in-depth investigation of the correction of extremes is outside the scope

of this study, our results highlight some important issues related to the treatment of

extremes during bias-correction. The proposed method relies on the climate model to

accurately simulate extremes. While RCMs may be limited in their ability to capture

extreme distributional tails of climate variables [44], [162], we did not incorporate an

additional adjustment for extremes as we felt it would be problematic to adjust future

extremes with the limited amount of data available for the calibration period. The

treatment of extremes within DMTA warrants further study, and we are investigating

this as part of future research.

The treatment of future extremes by EQM is also problematic. In EQM, the

shape of the TF for extreme quantiles (> 95) can be very different from the shape of

the TF at lower quantiles (e.g. Figure 4.9). Since observations representing extreme
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tails are scarce and highly variable, the TF produced by EQM may be unstable at

its tails. Consequently, the use of EQM for correcting future climate simulations can

cause distortion of the CCS [47], [144] and statistical artifacts [208]. Likewise, bias-

correction via EQM introduced inflated extremes in future data when the shape of

the TF at upper extreme quantiles was very different from the majority of the TF

(see Supplementary materials and Figures S2 and S3). While the effect of EQM tail

TFs on extremes is not apparent in the correction of historical data, this may result

in artifacts in future data that are a direct consequence of the shape of tail TFs, as

well as the fact that there is a greater frequency of higher temperature values in the

future.
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Figure 4.9: EQM transfer function (TF) (black line) for month 12 constructed using 1000
quantiles of observed and model data during the historical period (1976-2005). The shape
of the TF beyond the range of data values is shown by the blue dashed line. The lines at
a, b, and c show examples of how much model values are changed via the TF. At a), the
TF increases a model value of 5◦C to 6.7◦C. At b) a model value increases from 18◦C to
32.9◦C, and at c) a model value of 22◦C increases to 36.9◦C. The correction at b) results
in much larger increases in model values between 17.9 and 32.8◦C, as the shape of the TF
increases sharply. Furthermore, the correction at b) is unreliable, as that portion of the TF
is based on interpolation of the maximum quantiles of model and observed data.
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Chapter 5

Conclusion

High-resolution, bias-corrected climate data products are used in a wide variety of

disciplines, including agriculture, ecology, biology, and economics. General circulation

models (GCMs) as well as regional climate models are very important for predicting

past and future climate, but they cannot adequately capture local climate processes.

Downscaling and bias-correction are typically applied to climate model output prior

to its use in downstream modeling applications. Downscaling transforms data from a

coarse spatial scale to a fine spatial scale, whereas bias-correction procedures adjust

climate model output such that its statistical properties resemble those of observa-

tions. In this body of work, I developed computational workflows for constructing

high-resolution, bias-corrected climate data products. Within these computational

workflows, I addressed key issues related to bias-correction: spatial coherence, tem-

poral coherence, and the handling of extremes.

In spatially coherent bias-correction, the correction is adjusted depending on the

spatial location of model data. Spatially-coherent bias-correction can be very chal-

lenging if observed data is derived from climate stations, which are generally not
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evenly distributed over spatial regions. I developed simple and easy-to-implement

high-resolution computational workflows for downscaling and bias-correction in which

observed data is derived from sparsely distributed climate stations (Chapter 2). In

these workflows, bias-correction occurs either 1) at station locations, and resulting

corrected model data is interpolated to a fine-scale grid, or 2) at the fine-scale grid

using model and observed data that have been interpolated to the fine-scale grid.

I also compared two bias-correction methods, empirical quantile mapping (EQM)

and quantile mapping with linear transfer (LT) functions, in combination with two

downscaling techniques, kriging and topographical downscaling (a variation of in-

verse distance weighting). Performance was most dependent on the efficacy of the

bias-correction method and less dependent on the downscaling method. Downscaling

using topographical downscaling was as accurate as the more sophisticated geostatis-

tical method kriging.

The most appropriate bias-correction method for the construction of high-resolution

temperature data products using station data depends on the intended use of the

resulting data product. For historical products, improving day-to-day correspon-

dence of simulated and observed data is likely to be of interest. This was achieved

most effectively by bias-correction at the fine-scale grid using transfer functions ob-

tained from temporally-ordered regressions generated at station locations. However,

to achieve distributional similarity of simulated and observed data in historical data

products, EQM performed best. For future data products, quantile mapping using

simple LT functions constructed through rank-ordered regression provided more ro-

bust bias-correction of temperature variables than EQM, which is prone to overfitting

on calibration data.
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The application of spatially-coherent bias-correction is likely dependent on re-

gional fine-scale topography, the size of the study area, the type of meteorological

variable, the spatial resolution of model simulations, and unique, fine-scale land-

scape characteristics. The application of spatially-coherent bias-correction is rela-

tively straightforward for well-behaved variables such as temperature. For censored

and highly skewed variables such as precipitation, the process may become more

complicated. For instance, interpolation methods must be modified to avoid negative

values and to preserve the highly skewed nature of precipitation variables.

For larger study areas or those with complex regional topography, spatially-

coherent bias correction would likely result in more accurate data products. Spatially

coherent bias-correction would also improve the quality of data products when model

simulations are only available at larger spatial scales (> 4km). Spatially coherent

bias-correction could help fill the gap between model output at coarser spatial reso-

lutions and fine-scale topography and orography. Finally, more sophisticated spatial

models, such as the Gaussian spatiotemporal model described in A4, may provide

better uncertainty quantification regarding the bias-correction. However, some issues

remain regarding the consistent estimation of spatial and temporal variance parame-

ters and requires further work.

Temporal dependence (the correlation of past and future values) of climate impacts

persistence attributes such as the length of hot and cold spells and dry and wet spells

and also the frequency of extreme events. Temporal variability can also influence

persistence attributes such as lag 1 and lag 2 autocorrelations and the distribution

of n−day moving averages. These persistence attributes are extremely important for

predicting the effects of climate change on agricultural production, farming, human
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health, and energy. In chapter 4 I developed a method for temporally-coherent bias-

correction that features a process convolution approach for correcting bias in temporal

dependence, and a series of linear transformations are used to correct the distribu-

tion of model data in both historical and future time periods. Process convolution

models can provide insight into the component frequencies of model and observed

time series. In this approach, process convolution models are fitted to detrended,

spatially averaged time series of model and observed data. The model time series is

adjusted such that the temporal dependence matches that of the observed time series.

Next, the adjusted model time series is back- transformed using seasonal means and

standard deviations obtained from observed data. Finally, the spatially averaged,

corrected model time series is used to correct spatially explicit model data. As part

of a high-resolution downscaling and bias-correction workflow, I applied the proposed

bias-correction method to historical (1976-2005) and future (2006-2099) maximum

temperature simulations generated by an RCM. I compared the performances of the

proposed method and EQM in correcting distributional discrepancies of model out-

put using a cross-validation procedure. I found that after adjustment via the process

convolution approach, temporal dependence structures of model output resembled

those of observed data. The proposed method also corrected biases of means without

the risk of overfitting. Moreover, trends in seasonal means and standard deviations

of future model data were better preserved using the proposed method, while bias-

correction via EQM caused statistical artifacts at extreme quantiles and resulted in

a distortion of the seasonal standard deviation trend over time.

While the process of adjusting temporal dependence is straightforward, extensions

to the process could increase its computational efficiency and ease of use. The pro-
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posed bias-correction method was designed specifically for temperature variables. A

process convolution approach may not be appropriate for highly skewed meteorologi-

cal variables such as precipitation. Also, the type of temporal dependence (periodic or

non-periodic) as well as length scale parameters of the kernel bases used in the process

convolution model must be selected by the modeler. Suitable techniques for selecting

appropriate kernel parameters are group shrinkage methods such as the group lasso

or its Bayesian counterpart. However, I found that group lasso approaches were also

computationally intensive and contradicted results from process convolution models

fitted as random effects models. Thus, the fitting of process convolution models could

be expedited by automating kernel parameter selection. It may also be possible to

perform temporally coherent bias- correction using other signal processing techniques

such as the discrete Fourier transform or discrete wavelet transform. These techniques

are more efficient than process convolution modeling, but the adjustment of temporal

dependence via modification of Fourier or wavelet coefficients is not straightforward.

Further work would be necessary to incorporate these alternative techniques in a

bias-correction method.

Since extremes have a disproportionately large effect on downstream modeling

results, it is important that extremes are accurately represented in climate data

products. EQM can generally correct distributional discrepancies between simulated

climate variables and observed data. However, EQM may be sensitive to the choice

of calibration period and is prone to overfitting, especially at extremes where data

is scarce and highly variable. The handling of extremes is especially important for

highly skewed variables such as precipitation. At distributional extremes, the transfer

functions produced by EQM may be unstable, resulting in the inflation of deflation of
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extremes and the introduction of additional uncertainty. To bias-correct precipitation

extremes, hybrid quantile-mapping approaches have been proposed where extreme

tails are modeled using heavy tailed distributions such as the generalized Pareto or

the exponential. The drawback of such hybrid parametric methods is that the tails

of model and observed data are assumed to follow a known distribution. If no known

distribution can be adequately fitted to the extreme tails of model and observed

data, bias-correction will be unreliable. I developed a different hybrid bias-correction

method (EQM-LIN) that combines the efficacy of EQM for correcting lower quantiles

with a robust linear correction for upper quantiles (Chapter 3). I applied both EQM

and EQM-LIN to historical daily precipitation data simulated by an RCM over a

region in the northeastern United States. I found that bias-correction via EQM-LIN

resulted in an accurate representation of both mean and extreme precipitation. The

linear correction proved resistant to overfitting on calibration data and provided a

reliable correction at extreme tails. EQM-LIN outperformed EQM in terms of model

skill and performed at least as well or better than EQM with respect to several clima-

tological indices. In this research, EQM-LIN was applied to daily precipitation sim-

ulations, but we expect it could be applied to other meteorological variables without

further modification. Further extensions to EQM-LIN could include an adjustment

of the slope of the linear correction.

The construction of high-resolution, bias-corrected climate data products will be-

come increasingly more important for modeling efforts in many different disciplines

as climate change advances with more extreme weather conditions. In addition, such

climate products will be indispensable for the development and implementation of

strategies to mitigate and adapt to a changing climate. This research provides com-
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putational workflows and methodologies that facilitate quality construction of reliable

climate data products at fine spatial resolutions.
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Table 5.1: Table S1. Pairwise comparisons for the interaction Month × Method in the
RMSE ANOVA model

contrast estimate SE df t.ratio p.value
Month = 1
EQM_krig - EQM_IDW -0.0358 0.0508 204 -0.705 1.0000
EQM_grid - EQM_IDW -0.0386 0.0508 204 -0.760 1.0000
EQM_grid - EQM_krig -0.0028 0.0508 204 -0.055 1.0000
LT_grid - EQM_IDW -0.1421 0.0508 204 -2.795 0.0854
LT_grid - EQM_krig -0.1062 0.0508 204 -2.090 0.5682
LT_grid - EQM_grid -0.1034 0.0508 204 -2.035 0.6472
LTQM_grid_C - EQM_IDW -0.0414 0.0508 204 -0.815 1.0000
LTQM_grid_C - EQM_krig -0.0056 0.0508 204 -0.110 1.0000
LTQM_grid_C - EQM_grid -0.0028 0.0508 204 -0.055 1.0000
LTQM_grid_C - LT_grid 0.1006 0.0508 204 1.980 0.7361
LTQM_grid_V - EQM_IDW -0.0307 0.0508 204 -0.604 1.0000
LTQM_grid_V - EQM_krig 0.0051 0.0508 204 0.100 1.0000
LTQM_grid_V - EQM_grid 0.0079 0.0508 204 0.155 1.0000
LTQM_grid_V - LT_grid 0.1113 0.0508 204 2.190 0.4447
LTQM_grid_V - LTQM_grid_C 0.0107 0.0508 204 0.210 1.0000
Month = 2
EQM_krig - EQM_IDW -0.0007 0.0508 204 -0.014 1.0000
EQM_grid - EQM_IDW -0.0231 0.0508 204 -0.454 1.0000
EQM_grid - EQM_krig -0.0223 0.0508 204 -0.440 1.0000
LT_grid - EQM_IDW -0.1898 0.0508 204 -3.733 0.0037
LT_grid - EQM_krig -0.1891 0.0508 204 -3.719 0.0039
LT_grid - EQM_grid -0.1667 0.0508 204 -3.279 0.0184
LTQM_grid_C - EQM_IDW -0.0468 0.0508 204 -0.920 1.0000
LTQM_grid_C - EQM_krig -0.0460 0.0508 204 -0.906 1.0000
LTQM_grid_C - EQM_grid -0.0237 0.0508 204 -0.466 1.0000
LTQM_grid_C - LT_grid 0.1430 0.0508 204 2.813 0.0808
LTQM_grid_V - EQM_IDW -0.0487 0.0508 204 -0.957 1.0000
LTQM_grid_V - EQM_krig -0.0479 0.0508 204 -0.943 1.0000
LTQM_grid_V - EQM_grid -0.0256 0.0508 204 -0.503 1.0000
LTQM_grid_V - LT_grid 0.1411 0.0508 204 2.776 0.0903
LTQM_grid_V - LTQM_grid_C -0.0019 0.0508 204 -0.037 1.0000
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Month = 3
EQM_krig - EQM_IDW 0.0087 0.0508 204 0.171 1.0000
EQM_grid - EQM_IDW -0.0360 0.0508 204 -0.707 1.0000
EQM_grid - EQM_krig -0.0446 0.0508 204 -0.878 1.0000
LT_grid - EQM_IDW -0.2269 0.0508 204 -4.463 0.0002
LT_grid - EQM_krig -0.2356 0.0508 204 -4.634 0.0001
LT_grid - EQM_grid -0.1909 0.0508 204 -3.756 0.0034
LTQM_grid_C - EQM_IDW -0.0521 0.0508 204 -1.025 1.0000
LTQM_grid_C - EQM_krig -0.0608 0.0508 204 -1.196 1.0000
LTQM_grid_C - EQM_grid -0.0162 0.0508 204 -0.318 1.0000
LTQM_grid_C - LT_grid 0.1748 0.0508 204 3.438 0.0107
LTQM_grid_V - EQM_IDW -0.0580 0.0508 204 -1.141 1.0000
LTQM_grid_V - EQM_krig -0.0667 0.0508 204 -1.312 1.0000
LTQM_grid_V - EQM_grid -0.0221 0.0508 204 -0.434 1.0000
LTQM_grid_V - LT_grid 0.1689 0.0508 204 3.322 0.0159
LTQM_grid_V - LTQM_grid_C -0.0059 0.0508 204 -0.116 1.0000
Month = 4
EQM_krig - EQM_IDW 0.0126 0.0508 204 0.248 1.0000
EQM_grid - EQM_IDW -0.0205 0.0508 204 -0.404 1.0000
EQM_grid - EQM_krig -0.0331 0.0508 204 -0.652 1.0000
LT_grid - EQM_IDW -0.1101 0.0508 204 -2.165 0.4728
LT_grid - EQM_krig -0.1227 0.0508 204 -2.413 0.2505
LT_grid - EQM_grid -0.0895 0.0508 204 -1.762 1.0000
LTQM_grid_C - EQM_IDW 0.1601 0.0508 204 3.150 0.0282
LTQM_grid_C - EQM_krig 0.1475 0.0508 204 2.902 0.0618
LTQM_grid_C - EQM_grid 0.1806 0.0508 204 3.553 0.0071
LTQM_grid_C - LT_grid 0.2702 0.0508 204 5.315 <.0001
LTQM_grid_V - EQM_IDW 0.1469 0.0508 204 2.890 0.0640
LTQM_grid_V - EQM_krig 0.1343 0.0508 204 2.642 0.1331
LTQM_grid_V - EQM_grid 0.1674 0.0508 204 3.294 0.0175
LTQM_grid_V - LT_grid 0.2570 0.0508 204 5.055 <.0001
LTQM_grid_V - LTQM_grid_C -0.0132 0.0508 204 -0.260 1.0000
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Month = 5
EQM_krig - EQM_IDW 0.0234 0.0508 204 0.460 1.0000
EQM_grid - EQM_IDW -0.0093 0.0508 204 -0.183 1.0000
EQM_grid - EQM_krig -0.0327 0.0508 204 -0.644 1.0000
LT_grid - EQM_IDW -0.0178 0.0508 204 -0.351 1.0000
LT_grid - EQM_krig -0.0412 0.0508 204 -0.811 1.0000
LT_grid - EQM_grid -0.0085 0.0508 204 -0.168 1.0000
LTQM_grid_C - EQM_IDW 0.1026 0.0508 204 2.018 0.6740
LTQM_grid_C - EQM_krig 0.0792 0.0508 204 1.557 1.0000
LTQM_grid_C - EQM_grid 0.1119 0.0508 204 2.201 0.4330
LTQM_grid_C - LT_grid 0.1204 0.0508 204 2.369 0.2818
LTQM_grid_V - EQM_IDW 0.2000 0.0508 204 3.934 0.0017
LTQM_grid_V - EQM_krig 0.1766 0.0508 204 3.474 0.0094
LTQM_grid_V - EQM_grid 0.2093 0.0508 204 4.118 0.0008
LTQM_grid_V - LT_grid 0.2178 0.0508 204 4.285 0.0004
LTQM_grid_V - LTQM_grid_C 0.0974 0.0508 204 1.917 0.8499
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Month = 6
EQM_krig - EQM_IDW -0.0152 0.0508 204 -0.300 1.0000
EQM_grid - EQM_IDW -0.0260 0.0508 204 -0.512 1.0000
EQM_grid - EQM_krig -0.0108 0.0508 204 -0.212 1.0000
LT_grid - EQM_IDW -0.0445 0.0508 204 -0.875 1.0000
LT_grid - EQM_krig -0.0293 0.0508 204 -0.576 1.0000
LT_grid - EQM_grid -0.0185 0.0508 204 -0.364 1.0000
LTQM_grid_C - EQM_IDW 0.0233 0.0508 204 0.458 1.0000
LTQM_grid_C - EQM_krig 0.0385 0.0508 204 0.758 1.0000
LTQM_grid_C - EQM_grid 0.0493 0.0508 204 0.970 1.0000
LTQM_grid_C - LT_grid 0.0678 0.0508 204 1.334 1.0000
LTQM_grid_V - EQM_IDW 0.1182 0.0508 204 2.325 0.3160
LTQM_grid_V - EQM_krig 0.1334 0.0508 204 2.624 0.1401
LTQM_grid_V - EQM_grid 0.1442 0.0508 204 2.837 0.0753
LTQM_grid_V - LT_grid 0.1627 0.0508 204 3.200 0.0239
LTQM_grid_V - LTQM_grid_C 0.0949 0.0508 204 1.866 0.9512
Month = 7
EQM_krig - EQM_IDW 0.0057 0.0508 204 0.113 1.0000
EQM_grid - EQM_IDW -0.0355 0.0508 204 -0.698 1.0000
EQM_grid - EQM_krig -0.0412 0.0508 204 -0.810 1.0000
LT_grid - EQM_IDW -0.0054 0.0508 204 -0.106 1.0000
LT_grid - EQM_krig -0.0111 0.0508 204 -0.218 1.0000
LT_grid - EQM_grid 0.0301 0.0508 204 0.592 1.0000
LTQM_grid_C - EQM_IDW -0.0442 0.0508 204 -0.869 1.0000
LTQM_grid_C - EQM_krig -0.0499 0.0508 204 -0.982 1.0000
LTQM_grid_C - EQM_grid -0.0087 0.0508 204 -0.171 1.0000
LTQM_grid_C - LT_grid -0.0388 0.0508 204 -0.763 1.0000
LTQM_grid_V - EQM_IDW 0.1112 0.0508 204 2.188 0.4468
LTQM_grid_V - EQM_krig 0.1055 0.0508 204 2.076 0.5877
LTQM_grid_V - EQM_grid 0.1467 0.0508 204 2.886 0.0648
LTQM_grid_V - LT_grid 0.1166 0.0508 204 2.294 0.3423
LTQM_grid_V - LTQM_grid_C 0.1554 0.0508 204 3.057 0.0380
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Month = 8
EQM_krig - EQM_IDW -0.0058 0.0508 204 -0.113 1.0000
EQM_grid - EQM_IDW -0.0466 0.0508 204 -0.917 1.0000
EQM_grid - EQM_krig -0.0409 0.0508 204 -0.804 1.0000
LT_grid - EQM_IDW -0.0105 0.0508 204 -0.207 1.0000
LT_grid - EQM_krig -0.0047 0.0508 204 -0.093 1.0000
LT_grid - EQM_grid 0.0361 0.0508 204 0.710 1.0000
LTQM_grid_C - EQM_IDW 0.0321 0.0508 204 0.631 1.0000
LTQM_grid_C - EQM_krig 0.0378 0.0508 204 0.744 1.0000
LTQM_grid_C - EQM_grid 0.0787 0.0508 204 1.547 1.0000
LTQM_grid_C - LT_grid 0.0426 0.0508 204 0.837 1.0000
LTQM_grid_V - EQM_IDW 0.3961 0.0508 204 7.792 <.0001
LTQM_grid_V - EQM_krig 0.4019 0.0508 204 7.905 <.0001
LTQM_grid_V - EQM_grid 0.4427 0.0508 204 8.709 <.0001
LTQM_grid_V - LT_grid 0.4066 0.0508 204 7.998 <.0001
LTQM_grid_V - LTQM_grid_C 0.3640 0.0508 204 7.161 <.0001
Month = 9
EQM_krig - EQM_IDW 0.0063 0.0508 204 0.124 1.0000
EQM_grid - EQM_IDW -0.0206 0.0508 204 -0.405 1.0000
EQM_grid - EQM_krig -0.0269 0.0508 204 -0.529 1.0000
LT_grid - EQM_IDW 0.0030 0.0508 204 0.060 1.0000
LT_grid - EQM_krig -0.0032 0.0508 204 -0.064 1.0000
LT_grid - EQM_grid 0.0236 0.0508 204 0.465 1.0000
LTQM_grid_C - EQM_IDW -0.0615 0.0508 204 -1.209 1.0000
LTQM_grid_C - EQM_krig -0.0677 0.0508 204 -1.332 1.0000
LTQM_grid_C - EQM_grid -0.0409 0.0508 204 -0.804 1.0000
LTQM_grid_C - LT_grid -0.0645 0.0508 204 -1.269 1.0000
LTQM_grid_V - EQM_IDW 0.1249 0.0508 204 2.458 0.2223
LTQM_grid_V - EQM_krig 0.1187 0.0508 204 2.334 0.3084
LTQM_grid_V - EQM_grid 0.1455 0.0508 204 2.863 0.0696
LTQM_grid_V - LT_grid 0.1219 0.0508 204 2.398 0.2608
LTQM_grid_V - LTQM_grid_C 0.1864 0.0508 204 3.667 0.0047
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Month = 10
EQM_krig - EQM_IDW 0.0061 0.0508 204 0.120 1.0000
EQM_grid - EQM_IDW -0.0041 0.0508 204 -0.081 1.0000
EQM_grid - EQM_krig -0.0102 0.0508 204 -0.201 1.0000
LT_grid - EQM_IDW -0.0792 0.0508 204 -1.558 1.0000
LT_grid - EQM_krig -0.0853 0.0508 204 -1.679 1.0000
LT_grid - EQM_grid -0.0751 0.0508 204 -1.477 1.0000
LTQM_grid_C - EQM_IDW 0.0097 0.0508 204 0.192 1.0000
LTQM_grid_C - EQM_krig 0.0036 0.0508 204 0.071 1.0000
LTQM_grid_C - EQM_grid 0.0139 0.0508 204 0.273 1.0000
LTQM_grid_C - LT_grid 0.0889 0.0508 204 1.750 1.0000
LTQM_grid_V - EQM_IDW 0.0578 0.0508 204 1.137 1.0000
LTQM_grid_V - EQM_krig 0.0517 0.0508 204 1.017 1.0000
LTQM_grid_V - EQM_grid 0.0619 0.0508 204 1.218 1.0000
LTQM_grid_V - LT_grid 0.1370 0.0508 204 2.695 0.1143
LTQM_grid_V - LTQM_grid_C 0.0481 0.0508 204 0.945 1.0000
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Month = 11
EQM_krig - EQM_IDW 0.0261 0.0508 204 0.513 1.0000
EQM_grid - EQM_IDW -0.0258 0.0508 204 -0.508 1.0000
EQM_grid - EQM_krig -0.0519 0.0508 204 -1.021 1.0000
LT_grid - EQM_IDW -0.1856 0.0508 204 -3.651 0.0050
LT_grid - EQM_krig -0.2117 0.0508 204 -4.164 0.0007
LT_grid - EQM_grid -0.1598 0.0508 204 -3.143 0.0288
LTQM_grid_C - EQM_IDW -0.0608 0.0508 204 -1.195 1.0000
LTQM_grid_C - EQM_krig -0.0868 0.0508 204 -1.708 1.0000
LTQM_grid_C - EQM_grid -0.0349 0.0508 204 -0.687 1.0000
LTQM_grid_C - LT_grid 0.1249 0.0508 204 2.456 0.2232
LTQM_grid_V - EQM_IDW -0.0257 0.0508 204 -0.506 1.0000
LTQM_grid_V - EQM_krig -0.0518 0.0508 204 -1.019 1.0000
LTQM_grid_V - EQM_grid 0.0001 0.0508 204 0.002 1.0000
LTQM_grid_V - LT_grid 0.1599 0.0508 204 3.145 0.0286
LTQM_grid_V - LTQM_grid_C 0.0350 0.0508 204 0.689 1.0000
Month = 12
EQM_krig - EQM_IDW -0.0073 0.0508 204 -0.144 1.0000
EQM_grid - EQM_IDW -0.0614 0.0508 204 -1.208 1.0000
EQM_grid - EQM_krig -0.0541 0.0508 204 -1.064 1.0000
LT_grid - EQM_IDW -0.3990 0.0508 204 -7.849 <.0001
LT_grid - EQM_krig -0.3916 0.0508 204 -7.704 <.0001
LT_grid - EQM_grid -0.3376 0.0508 204 -6.641 <.0001
LTQM_grid_C - EQM_IDW -0.2600 0.0508 204 -5.114 <.0001
LTQM_grid_C - EQM_krig -0.2526 0.0508 204 -4.969 <.0001
LTQM_grid_C - EQM_grid -0.1985 0.0508 204 -3.906 0.0019
LTQM_grid_C - LT_grid 0.1390 0.0508 204 2.735 0.1018
LTQM_grid_V - EQM_IDW -0.2493 0.0508 204 -4.904 <.0001
LTQM_grid_V - EQM_krig -0.2420 0.0508 204 -4.760 0.0001
LTQM_grid_V - EQM_grid -0.1879 0.0508 204 -3.696 0.0042
LTQM_grid_V - LT_grid 0.1497 0.0508 204 2.944 0.0542
LTQM_grid_V - LTQM_grid_C 0.0107 0.0508 204 0.210 1.0000
Results are averaged over the levels of: Bias_correction_years, Elevation
P value adjustment: Bonferroni method for 15 tests
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Table 5.2: Table S2. Pairwise comparisons for the interaction Month × Method in the PSS
ANOVA model

contrast estimate SE df t.ratio p.value
Month = 1
EQM_IDW - EQM_grid -0.0026 0.0074 210 -0.357 1.0000
EQM_krig - EQM_grid -0.0004 0.0074 210 -0.058 1.0000
EQM_krig - EQM_IDW 0.0022 0.0074 210 0.299 1.0000
LT_grid - EQM_grid -0.0525 0.0074 210 -7.139 <.0001
LT_grid - EQM_IDW -0.0499 0.0074 210 -6.782 <.0001
LT_grid - EQM_krig -0.0521 0.0074 210 -7.081 <.0001
LTQM_grid_C - EQM_grid -0.0173 0.0074 210 -2.355 0.2918
LTQM_grid_C - EQM_IDW -0.0147 0.0074 210 -1.997 0.7061
LTQM_grid_C - EQM_krig -0.0169 0.0074 210 -2.296 0.3396
LTQM_grid_C - LT_grid 0.0352 0.0074 210 4.784 <.0001
LTQM_grid_V - EQM_grid -0.0152 0.0074 210 -2.070 0.5952
LTQM_grid_V - EQM_IDW -0.0126 0.0074 210 -1.713 1.0000
LTQM_grid_V - EQM_krig -0.0148 0.0074 210 -2.011 0.6833
LTQM_grid_V - LT_grid 0.0373 0.0074 210 5.069 <.0001
LTQM_grid_V - LTQM_grid_C 0.0021 0.0074 210 0.285 1.0000
Month = 2
EQM_IDW - EQM_grid 0.0046 0.0074 210 0.629 1.0000
EQM_krig - EQM_grid 0.0068 0.0074 210 0.927 1.0000
EQM_krig - EQM_IDW 0.0022 0.0074 210 0.299 1.0000
LT_grid - EQM_grid -0.0516 0.0074 210 -7.015 <.0001
LT_grid - EQM_IDW -0.0562 0.0074 210 -7.644 <.0001
LT_grid - EQM_krig -0.0584 0.0074 210 -7.942 <.0001
LTQM_grid_C - EQM_grid -0.0469 0.0074 210 -6.371 <.0001
LTQM_grid_C - EQM_IDW -0.0515 0.0074 210 -7.000 <.0001
LTQM_grid_C - EQM_krig -0.0537 0.0074 210 -7.298 <.0001
LTQM_grid_C - LT_grid 0.0047 0.0074 210 0.644 1.0000
LTQM_grid_V - EQM_grid -0.0467 0.0074 210 -6.344 <.0001
LTQM_grid_V - EQM_IDW -0.0513 0.0074 210 -6.972 <.0001
LTQM_grid_V - EQM_krig -0.0535 0.0074 210 -7.271 <.0001
LTQM_grid_V - LT_grid 0.0049 0.0074 210 0.671 1.0000
LTQM_grid_V - LTQM_grid_C 0.0002 0.0074 210 0.027 1.0000

229



Table S2 cont.

Month = 3
EQM_IDW - EQM_grid -0.0029 0.0074 210 -0.400 1.0000
EQM_krig - EQM_grid -0.0008 0.0074 210 -0.112 1.0000
EQM_krig - EQM_IDW 0.0021 0.0074 210 0.289 1.0000
LT_grid - EQM_grid -0.0925 0.0074 210 -12.577 <.0001
LT_grid - EQM_IDW -0.0896 0.0074 210 -12.177 <.0001
LT_grid - EQM_krig -0.0917 0.0074 210 -12.466 <.0001
LTQM_grid_C - EQM_grid -0.0700 0.0074 210 -9.509 <.0001
LTQM_grid_C - EQM_IDW -0.0670 0.0074 210 -9.108 <.0001
LTQM_grid_C - EQM_krig -0.0691 0.0074 210 -9.397 <.0001
LTQM_grid_C - LT_grid 0.0226 0.0074 210 3.068 0.0365
LTQM_grid_V - EQM_grid -0.0730 0.0074 210 -9.921 <.0001
LTQM_grid_V - EQM_IDW -0.0701 0.0074 210 -9.520 <.0001
LTQM_grid_V - EQM_krig -0.0722 0.0074 210 -9.809 <.0001
LTQM_grid_V - LT_grid 0.0195 0.0074 210 2.656 0.1275
LTQM_grid_V - LTQM_grid_C -0.0030 0.0074 210 -0.412 1.0000
Month = 4
EQM_IDW - EQM_grid 0.0010 0.0074 210 0.131 1.0000
EQM_krig - EQM_grid -0.0043 0.0074 210 -0.584 1.0000
EQM_krig - EQM_IDW -0.0053 0.0074 210 -0.715 1.0000
LT_grid - EQM_grid -0.0407 0.0074 210 -5.530 <.0001
LT_grid - EQM_IDW -0.0417 0.0074 210 -5.661 <.0001
LT_grid - EQM_krig -0.0364 0.0074 210 -4.946 <.0001
LTQM_grid_C - EQM_grid -0.0186 0.0074 210 -2.523 0.1857
LTQM_grid_C - EQM_IDW -0.0195 0.0074 210 -2.654 0.1285
LTQM_grid_C - EQM_krig -0.0143 0.0074 210 -1.939 0.8078
LTQM_grid_C - LT_grid 0.0221 0.0074 210 3.007 0.0444
LTQM_grid_V - EQM_grid -0.0114 0.0074 210 -1.553 1.0000
LTQM_grid_V - EQM_IDW -0.0124 0.0074 210 -1.684 1.0000
LTQM_grid_V - EQM_krig -0.0071 0.0074 210 -0.969 1.0000
LTQM_grid_V - LT_grid 0.0293 0.0074 210 3.977 0.0014
LTQM_grid_V - LTQM_grid_C 0.0071 0.0074 210 0.970 1.0000
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Table S2 cont.

Month = 5
EQM_IDW - EQM_grid 0.0048 0.0074 210 0.648 1.0000
EQM_krig - EQM_grid 0.0016 0.0074 210 0.224 1.0000
EQM_krig - EQM_IDW -0.0031 0.0074 210 -0.425 1.0000
LT_grid - EQM_grid -0.0476 0.0074 210 -6.464 <.0001
LT_grid - EQM_IDW -0.0523 0.0074 210 -7.113 <.0001
LT_grid - EQM_krig -0.0492 0.0074 210 -6.688 <.0001
LTQM_grid_C - EQM_grid 0.0077 0.0074 210 1.041 1.0000
LTQM_grid_C - EQM_IDW 0.0029 0.0074 210 0.392 1.0000
LTQM_grid_C - EQM_krig 0.0060 0.0074 210 0.817 1.0000
LTQM_grid_C - LT_grid 0.0552 0.0074 210 7.505 <.0001
LTQM_grid_V - EQM_grid 0.0093 0.0074 210 1.270 1.0000
LTQM_grid_V - EQM_IDW 0.0046 0.0074 210 0.621 1.0000
LTQM_grid_V - EQM_krig 0.0077 0.0074 210 1.046 1.0000
LTQM_grid_V - LT_grid 0.0569 0.0074 210 7.734 <.0001
LTQM_grid_V - LTQM_grid_C 0.0017 0.0074 210 0.229 1.0000
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Table S2 cont.

Month = 6
EQM_IDW - EQM_grid 0.0026 0.0074 210 0.356 1.0000
EQM_krig - EQM_grid 0.0097 0.0074 210 1.315 1.0000
EQM_krig - EQM_IDW 0.0071 0.0074 210 0.960 1.0000
LT_grid - EQM_grid -0.0175 0.0074 210 -2.375 0.2770
LT_grid - EQM_IDW -0.0201 0.0074 210 -2.730 0.1030
LT_grid - EQM_krig -0.0272 0.0074 210 -3.690 0.0043
LTQM_grid_C - EQM_grid 0.0310 0.0074 210 4.219 0.0005
LTQM_grid_C - EQM_IDW 0.0284 0.0074 210 3.863 0.0022
LTQM_grid_C - EQM_krig 0.0214 0.0074 210 2.904 0.0613
LTQM_grid_C - LT_grid 0.0485 0.0074 210 6.593 <.0001
LTQM_grid_V - EQM_grid 0.0247 0.0074 210 3.355 0.0141
LTQM_grid_V - EQM_IDW 0.0221 0.0074 210 3.000 0.0454
LTQM_grid_V - EQM_krig 0.0150 0.0074 210 2.040 0.6389
LTQM_grid_V - LT_grid 0.0422 0.0074 210 5.730 <.0001
LTQM_grid_V - LTQM_grid_C -0.0064 0.0074 210 -0.863 1.0000
Month = 7
EQM_IDW - EQM_grid 0.0051 0.0074 210 0.698 1.0000
EQM_krig - EQM_grid -0.0073 0.0074 210 -0.998 1.0000
EQM_krig - EQM_IDW -0.0125 0.0074 210 -1.696 1.0000
LT_grid - EQM_grid -0.0231 0.0074 210 -3.137 0.0293
LT_grid - EQM_IDW -0.0282 0.0074 210 -3.835 0.0025
LT_grid - EQM_krig -0.0157 0.0074 210 -2.139 0.5041
LTQM_grid_C - EQM_grid 0.0217 0.0074 210 2.955 0.0522
LTQM_grid_C - EQM_IDW 0.0166 0.0074 210 2.258 0.3751
LTQM_grid_C - EQM_krig 0.0291 0.0074 210 3.954 0.0016
LTQM_grid_C - LT_grid 0.0448 0.0074 210 6.092 <.0001
LTQM_grid_V - EQM_grid 0.0140 0.0074 210 1.899 0.8844
LTQM_grid_V - EQM_IDW 0.0088 0.0074 210 1.201 1.0000
LTQM_grid_V - EQM_krig 0.0213 0.0074 210 2.897 0.0625
LTQM_grid_V - LT_grid 0.0371 0.0074 210 5.036 <.0001
LTQM_grid_V - LTQM_grid_C -0.0078 0.0074 210 -1.056 1.0000
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Table S2 cont.

Month = 8
EQM_IDW - EQM_grid -0.0001 0.0074 210 -0.017 1.0000
EQM_krig - EQM_grid 0.0039 0.0074 210 0.529 1.0000
EQM_krig - EQM_IDW 0.0040 0.0074 210 0.545 1.0000
LT_grid - EQM_grid -0.0396 0.0074 210 -5.375 <.0001
LT_grid - EQM_IDW -0.0394 0.0074 210 -5.358 <.0001
LT_grid - EQM_krig -0.0434 0.0074 210 -5.904 <.0001
LTQM_grid_C - EQM_grid 0.0013 0.0074 210 0.174 1.0000
LTQM_grid_C - EQM_IDW 0.0014 0.0074 210 0.191 1.0000
LTQM_grid_C - EQM_krig -0.0026 0.0074 210 -0.355 1.0000
LTQM_grid_C - LT_grid 0.0408 0.0074 210 5.549 <.0001
LTQM_grid_V - EQM_grid -0.0068 0.0074 210 -0.924 1.0000
LTQM_grid_V - EQM_IDW -0.0067 0.0074 210 -0.907 1.0000
LTQM_grid_V - EQM_krig -0.0107 0.0074 210 -1.453 1.0000
LTQM_grid_V - LT_grid 0.0328 0.0074 210 4.451 0.0002
LTQM_grid_V - LTQM_grid_C -0.0081 0.0074 210 -1.098 1.0000
Month = 9
EQM_IDW - EQM_grid 0.0039 0.0074 210 0.528 1.0000
EQM_krig - EQM_grid 0.0048 0.0074 210 0.647 1.0000
EQM_krig - EQM_IDW 0.0009 0.0074 210 0.119 1.0000
LT_grid - EQM_grid -0.0090 0.0074 210 -1.225 1.0000
LT_grid - EQM_IDW -0.0129 0.0074 210 -1.753 1.0000
LT_grid - EQM_krig -0.0138 0.0074 210 -1.872 0.9384
LTQM_grid_C - EQM_grid 0.0271 0.0074 210 3.679 0.0045
LTQM_grid_C - EQM_IDW 0.0232 0.0074 210 3.151 0.0279
LTQM_grid_C - EQM_krig 0.0223 0.0074 210 3.032 0.0410
LTQM_grid_C - LT_grid 0.0361 0.0074 210 4.904 <.0001
LTQM_grid_V - EQM_grid 0.0308 0.0074 210 4.192 0.0006
LTQM_grid_V - EQM_IDW 0.0270 0.0074 210 3.663 0.0047
LTQM_grid_V - EQM_krig 0.0261 0.0074 210 3.544 0.0073
LTQM_grid_V - LT_grid 0.0399 0.0074 210 5.417 <.0001
LTQM_grid_V - LTQM_grid_C 0.0038 0.0074 210 0.512 1.0000
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Table S2 cont.

Month = 10
EQM_IDW - EQM_grid 0.0057 0.0074 210 0.781 1.0000
EQM_krig - EQM_grid 0.0102 0.0074 210 1.379 1.0000
EQM_krig - EQM_IDW 0.0044 0.0074 210 0.599 1.0000
LT_grid - EQM_grid -0.0211 0.0074 210 -2.869 0.0681
LT_grid - EQM_IDW -0.0269 0.0074 210 -3.649 0.0050
LT_grid - EQM_krig -0.0313 0.0074 210 -4.248 0.0005
LTQM_grid_C - EQM_grid 0.0260 0.0074 210 3.536 0.0075
LTQM_grid_C - EQM_IDW 0.0203 0.0074 210 2.755 0.0957
LTQM_grid_C - EQM_krig 0.0159 0.0074 210 2.157 0.4826
LTQM_grid_C - LT_grid 0.0471 0.0074 210 6.405 <.0001
LTQM_grid_V - EQM_grid 0.0254 0.0074 210 3.457 0.0099
LTQM_grid_V - EQM_IDW 0.0197 0.0074 210 2.676 0.1206
LTQM_grid_V - EQM_krig 0.0153 0.0074 210 2.077 0.5851
LTQM_grid_V - LT_grid 0.0465 0.0074 210 6.325 <.0001
LTQM_grid_V - LTQM_grid_C -0.0006 0.0074 210 -0.080 1.0000

234



Month = 11
EQM_IDW - EQM_grid 0.0013 0.0074 210 0.181 1.0000
EQM_krig - EQM_grid 0.0066 0.0074 210 0.903 1.0000
EQM_krig - EQM_IDW 0.0053 0.0074 210 0.722 1.0000
LT_grid - EQM_grid -0.0177 0.0074 210 -2.410 0.2519
LT_grid - EQM_IDW -0.0191 0.0074 210 -2.591 0.1534
LT_grid - EQM_krig -0.0244 0.0074 210 -3.314 0.0163
LTQM_grid_C - EQM_grid 0.0159 0.0074 210 2.162 0.4763
LTQM_grid_C - EQM_IDW 0.0146 0.0074 210 1.981 0.7336
LTQM_grid_C - EQM_krig 0.0093 0.0074 210 1.259 1.0000
LTQM_grid_C - LT_grid 0.0336 0.0074 210 4.572 0.0001
LTQM_grid_V - EQM_grid 0.0167 0.0074 210 2.271 0.3620
LTQM_grid_V - EQM_IDW 0.0154 0.0074 210 2.090 0.5667
LTQM_grid_V - EQM_krig 0.0101 0.0074 210 1.368 1.0000
LTQM_grid_V - LT_grid 0.0345 0.0074 210 4.682 0.0001
LTQM_grid_V - LTQM_grid_C 0.0008 0.0074 210 0.110 1.0000
Month = 12
EQM_IDW - EQM_grid -0.0024 0.0074 210 -0.332 1.0000
EQM_krig - EQM_grid -0.0036 0.0074 210 -0.488 1.0000
EQM_krig - EQM_IDW -0.0012 0.0074 210 -0.157 1.0000
LT_grid - EQM_grid -0.0136 0.0074 210 -1.844 0.9984
LT_grid - EQM_IDW -0.0111 0.0074 210 -1.513 1.0000
LT_grid - EQM_krig -0.0100 0.0074 210 -1.356 1.0000
LTQM_grid_C - EQM_grid 0.0049 0.0074 210 0.662 1.0000
LTQM_grid_C - EQM_IDW 0.0073 0.0074 210 0.993 1.0000
LTQM_grid_C - EQM_krig 0.0085 0.0074 210 1.150 1.0000
LTQM_grid_C - LT_grid 0.0184 0.0074 210 2.506 0.1947
LTQM_grid_V - EQM_grid 0.0073 0.0074 210 0.989 1.0000
LTQM_grid_V - EQM_IDW 0.0097 0.0074 210 1.320 1.0000
LTQM_grid_V - EQM_krig 0.0109 0.0074 210 1.477 1.0000
LTQM_grid_V - LT_grid 0.0208 0.0074 210 2.833 0.0759
LTQM_grid_V - LTQM_grid_C 0.0024 0.0074 210 0.327 1.0000
Results are averaged over the levels of: Bias_correction_years
P value adjustment: bonferroni method for 15 tests
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Table 5.3: Pairwise comparisons for the interaction Bias_correction_years × Method in
the RMSE ANOVA model

contrast estimate SE df t.ratio p.value
Bias_correction_years = 1980-1989
EQM_krig - EQM_IDW -0.0062 0.0208 204 -0.300 1.0000
EQM_grid - EQM_IDW -0.0219 0.0208 204 -1.053 1.0000
EQM_grid - EQM_krig -0.0156 0.0208 204 -0.753 1.0000
LT_grid - EQM_IDW -0.1697 0.0208 204 -8.179 <.0001
LT_grid - EQM_krig -0.1635 0.0208 204 -7.879 <.0001
LT_grid - EQM_grid -0.1479 0.0208 204 -7.126 <.0001
LTQM_grid_C - EQM_IDW -0.0557 0.0208 204 -2.685 0.1177
LTQM_grid_C - EQM_krig -0.0495 0.0208 204 -2.385 0.2696
LTQM_grid_C - EQM_grid -0.0339 0.0208 204 -1.632 1.0000
LTQM_grid_C - LT_grid 0.1140 0.0208 204 5.494 <.0001
LTQM_grid_V - EQM_IDW 0.0135 0.0208 204 0.652 1.0000
LTQM_grid_V - EQM_krig 0.0197 0.0208 204 0.951 1.0000
LTQM_grid_V - EQM_grid 0.0354 0.0208 204 1.705 1.0000
LTQM_grid_V - LT_grid 0.1833 0.0208 204 8.830 <.0001
LTQM_grid_V - LTQM_grid_C 0.0692 0.0208 204 3.337 0.0151
Bias_correction_years = 1980-2014
EQM_krig - EQM_IDW 0.0102 0.0208 204 0.492 1.0000
EQM_grid - EQM_IDW -0.0361 0.0208 204 -1.738 1.0000
EQM_grid - EQM_krig -0.0463 0.0208 204 -2.230 0.4023
LT_grid - EQM_IDW -0.0649 0.0208 204 -3.127 0.0304
LT_grid - EQM_krig -0.0751 0.0208 204 -3.619 0.0056
LT_grid - EQM_grid -0.0288 0.0208 204 -1.389 1.0000
LTQM_grid_C - EQM_IDW 0.0159 0.0208 204 0.767 1.0000
LTQM_grid_C - EQM_krig 0.0057 0.0208 204 0.274 1.0000
LTQM_grid_C - EQM_grid 0.0520 0.0208 204 2.505 0.1957
LTQM_grid_C - LT_grid 0.0808 0.0208 204 3.894 0.0020
LTQM_grid_V - EQM_IDW 0.1103 0.0208 204 5.313 <.0001
LTQM_grid_V - EQM_krig 0.1000 0.0208 204 4.821 <.0001
LTQM_grid_V - EQM_grid 0.1463 0.0208 204 7.051 <.0001
LTQM_grid_V - LT_grid 0.1752 0.0208 204 8.440 <.0001
LTQM_grid_V - LTQM_grid_C 0.0944 0.0208 204 4.547 0.0001
Results are averaged over the levels of: Month, Elevation
P value adjustment: bonferroni method for 15 tests
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Table 5.4: Pairwise comparisons for the interaction Bias_correction_years × Method in
the PSS ANOVA model

contrast estimate SE df t.ratio p.value
Bias_correction_years = 1980-1989
EQM_krig - EQM_IDW -0.0005 0.0030 210 -0.182 1.0000
EQM_grid - EQM_IDW -0.0015 0.0030 210 -0.490 1.0000
EQM_grid - EQM_krig -0.0009 0.0030 210 -0.308 1.0000
LT_grid - EQM_IDW -0.0182 0.0030 210 -6.044 <.0001
LT_grid - EQM_krig -0.0176 0.0030 210 -5.862 <.0001
LT_grid - EQM_grid -0.0167 0.0030 210 -5.554 <.0001
LTQM_grid_C - EQM_IDW 0.0101 0.0030 210 3.375 0.0132
LTQM_grid_C - EQM_krig 0.0107 0.0030 210 3.557 0.0070
LTQM_grid_C - EQM_grid 0.0116 0.0030 210 3.864 0.0022
LTQM_grid_C - LT_grid 0.0283 0.0030 210 9.418 <.0001
LTQM_grid_V - EQM_IDW 0.0098 0.0030 210 3.263 0.0193
LTQM_grid_V - EQM_krig 0.0103 0.0030 210 3.445 0.0104
LTQM_grid_V - EQM_grid 0.0113 0.0030 210 3.753 0.0034
LTQM_grid_V - LT_grid 0.0280 0.0030 210 9.306 <.0001
LTQM_grid_V - LTQM_grid_C -0.0003 0.0030 210 -0.112 1.0000
Bias_correction_years = 1980-2014
EQM_krig - EQM_IDW 0.0016 0.0030 210 0.524 1.0000
EQM_grid - EQM_IDW -0.0020 0.0030 210 -0.672 1.0000
EQM_grid - EQM_krig -0.0036 0.0030 210 -1.196 1.0000
LT_grid - EQM_IDW -0.0564 0.0030 210 -18.781 <.0001
LT_grid - EQM_krig -0.0580 0.0030 210 -19.305 <.0001
LT_grid - EQM_grid -0.0544 0.0030 210 -18.109 <.0001
LTQM_grid_C - EQM_IDW -0.0165 0.0030 210 -5.487 <.0001
LTQM_grid_C - EQM_krig -0.0181 0.0030 210 -6.012 <.0001
LTQM_grid_C - EQM_grid -0.0145 0.0030 210 -4.816 <.0001
LTQM_grid_C - LT_grid 0.0399 0.0030 210 13.293 <.0001
LTQM_grid_V - EQM_IDW -0.0174 0.0030 210 -5.804 <.0001
LTQM_grid_V - EQM_krig -0.0190 0.0030 210 -6.328 <.0001
LTQM_grid_V - EQM_grid -0.0154 0.0030 210 -5.132 <.0001
LTQM_grid_V - LT_grid 0.0390 0.0030 210 12.977 <.0001
LTQM_grid_V - LTQM_grid_C -0.0010 0.0030 210 -0.317 1.0000
Results are averaged over the levels of: Month
P value adjustment: bonferroni method for 15 tests
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Table 5.5: Pairwise comparisons for the interaction Elevation × Method in the RMSE
ANOVA model

contrast estimate SE df t.ratio p.value
Elevation = NO
EQM_krig - EQM_IDW -0.0016 0.0208 204 -0.079 1.0000
EQM_grid - EQM_IDW -0.0220 0.0208 204 -1.061 1.0000
EQM_grid - EQM_krig -0.0204 0.0208 204 -0.982 1.0000
LT_grid - EQM_IDW -0.1352 0.0208 204 -6.515 <.0001
LT_grid - EQM_krig -0.1336 0.0208 204 -6.436 <.0001
LT_grid - EQM_grid -0.1132 0.0208 204 -5.454 <.0001
LTQM_grid_C - EQM_IDW -0.0570 0.0208 204 -2.747 0.0982
LTQM_grid_C - EQM_krig -0.0554 0.0208 204 -2.668 0.1237
LTQM_grid_C - EQM_grid -0.0350 0.0208 204 -1.686 1.0000
LTQM_grid_C - LT_grid 0.0782 0.0208 204 3.768 0.0032
LTQM_grid_V - EQM_IDW 0.0604 0.0208 204 2.913 0.0597
LTQM_grid_V - EQM_krig 0.0621 0.0208 204 2.992 0.0467
LTQM_grid_V - EQM_grid 0.0825 0.0208 204 3.974 0.0015
LTQM_grid_V - LT_grid 0.1957 0.0208 204 9.428 <.0001
LTQM_grid_V - LTQM_grid_C 0.1175 0.0208 204 5.660 <.0001
Elevation = YES
EQM_krig - EQM_IDW 0.0056 0.0208 204 0.272 1.0000
EQM_grid - EQM_IDW -0.0359 0.0208 204 -1.730 1.0000
EQM_grid - EQM_krig -0.0416 0.0208 204 -2.002 0.6990
LT_grid - EQM_IDW -0.0994 0.0208 204 -4.791 <.0001
LT_grid - EQM_krig -0.1051 0.0208 204 -5.063 <.0001
LT_grid - EQM_grid -0.0635 0.0208 204 -3.061 0.0376
LTQM_grid_C - EQM_IDW 0.0172 0.0208 204 0.829 1.0000
LTQM_grid_C - EQM_krig 0.0116 0.0208 204 0.557 1.0000
LTQM_grid_C - EQM_grid 0.0531 0.0208 204 2.559 0.1685
LTQM_grid_C - LT_grid 0.1166 0.0208 204 5.619 <.0001
LTQM_grid_V - EQM_IDW 0.0633 0.0208 204 3.052 0.0386
LTQM_grid_V - EQM_krig 0.0577 0.0208 204 2.780 0.0891
LTQM_grid_V - EQM_grid 0.0992 0.0208 204 4.782 <.0001
LTQM_grid_V - LT_grid 0.1628 0.0208 204 7.843 <.0001
LTQM_grid_V - LTQM_grid_C 0.0461 0.0208 204 2.223 0.4092
Results are averaged over the levels of: Month, Bias_correction_years
P value adjustment: bonferroni method for 15 tests
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Physics settings for the WRF model

Table 5.6: Physics settings and details for the WRF model

Setting Details

Microphysics

WRF Single–moment 6–class Scheme (Hong, S.–Y., and J.–O. J.
Lim, 2006:
The WRF single–moment 6–class microphysics scheme (WSM6).
J. Korean Meteor. Soc., 42, 129–151.)

Radiation

RRTMG Shortwave and Longwave Schemes
(Iacono, M. J., J. S. Delamere, E. J. Mlawer, M.
W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative
forcing by long–lived
greenhouse gases: Calculations with the
AER radiative transfer models. J. Geophys.
Res., 113, D13103. doi:10.1029/2008JD009944)

Boundary layer

Mellor–Yamada–Janjic Scheme (MYJ) (Janjic, Zavisa I., 1994:
The Step–Mountain Eta
Coordinate Model: Further developments
of the convection, viscous sublayer, and
turbulence closure schemes. Mon.
Wea. Rev., 122, 927–945.
doi:10.1175/1520-0493(1994)122%3c0927:TSMECM%3e2.0.CO;2)

Cumulus convection

New Simplified Arakawa–Schubert Scheme (for Basic WRF)
(Han, Jongil and Hua–Lu Pan, 2011:
Revision of convection
and vertical diffusion schemes in the NCEP Global Forecast System.
Wea. Forecasting, 26, 520–533. doi:10.1175/WAF-D-10-05038.1)

Land surface physics

Unified Noah Land Surface Model
(Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A.
LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel,
and R. H. Cuenca, 2004: Implementation and
verification of the unified NOAH land surface model in
the WRF model. 20th conference on
weather analysis and
forecasting/16th conference on numerical weather prediction, pp. 11–15.)

Surface layer physics

Eta Similarity Scheme (Janjic, Z. I., 1994: The step-mountain Eta
coordinate model: further
developments of the convection,
viscous sublayer and turbulence closure schemes. Mon. Wea.
Rev., 122, 927–945.
doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2)
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Statistical methods

Bayesian kriging

For LT_grid, LTQM_grid_C, and LTQM_grid_V, estimated slope and intercept

parameters from transfer functions were kriged to the fine-scale grid using Bayesian

kriging. One assumption of Bayesian spatial hierarchical models is that random

spatial variates can be modeled by unique Gaussian spatial processes, Y (s), with mean

µ(s) = E(Y (s)), and where the measurement locations {s1...sn} are, in this study,

WRF center grid points. In Gaussian spatial processes, observations Y = {s1...sn}

are assumed to follow a multivariate normal distribution [209]:

Y |µ, θ ∼ Nn(µ1, σ(θ)),

where Nn connotes the N dimensional normal distribution, µ is the constant mean,

σ(θ)ij gives the covariance between Y (si) and Y (sj), and θ = (τ 2, σ2, ϕ)T is a vector

of spatial parameters upon which the covariance matrix depends. For methods LT_-

grid, LTQM_grid_C, and LTQM_grid_V, the response variables were monthly slope

and intercept estimated parameters. For each month, estimated slopes and intercepts

were kriged from station locations to the fine-scale grid. We used a Bayesian spatial

hierarchical model of the form:

Y (s) = µ(s) + w(s) + ϵ(s), (5.1)

where Y (s) is the response at location s having a mean structure µ(s) = xT (s)β.

240



The implementation of a full Bayesian spatial model is computationally intensive, due

to the inversion of large (n × n) covariance matrices [209]. To decrease computation

time, we instead used a nearest-neighbor Gaussian process model (NNGP), which

is computationally more efficient than the full Gaussian process model in (5.1). In

NNGP models, the spatial process is estimated based on its m nearest neighbors, but

inference is nearly identical to than the model in (5.1) [210]. The spNNGP function

from the spNNGP package in R constructs an NNGP model [210]. In this function,

Markov chain Monte Carlo (MCMC) sampling approximates the posterior distribu-

tion of the parameter vector θ by fitting the marginalized model f(y|θ)p(θ), which

integrates over the spatial effects vector W and regression coefficients. The spNNGP

function allows σ2 and the ratio τ 2/σ2 to vary, making it a flexible model [209]. Pre-

dictions were made by passing the resulting model fit from spNNGP to the spPredict

function [210], which carries out Bayesian kriging.

Based on inspection of empirical variograms, we used the exponential covariance

function for fitting all models.

C(t) =


τ 2 + σ2 if d = 0

σ2exp(−ϕd) if d > 0

 (5.2)

In (5.2), ||h|| = d, and ϕ, τ 2, and σ2 are the effective range, nugget effect, and

partial sill, respectively. The exponential covariance function reaches 0 asymptoti-

cally, so the effective range, rather than the range, must be used. The effective range

d0, can be obtained by setting exp(−ϕd) = 0.05, which yields d0 = 3
ϕ
.

We used non-informative priors for the intercept (β0), partial sill (σ2), and nugget

(τ 2), and we used an informative prior for the effective range (ϕ). We inspected
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variograms of residuals from a simple linear model fit to determine appropriate initial

values for the effective range, ϕ. For Bayesian kriging in EQM_grid, the following

priors were used:

β0 ∼ N(0, 100)

ϕ ∼ Unif( 3
Dmax

,
3
10)

σ2 ∼ InvGamma(2, 2)

τ 2 ∼ InvGamma(2, 0.1),

where Dmax was the maximum distance between any two GHCND station locations.

The priors for all Bayesian kriging implemented in methods LT_grid, LTQM_grid_-

V, and LTQM_grid_V were the same as those for EQM_grid, except we used an

InvGamma(2, 0.02) prior for τ 2. All daily NNGP kriging models were run with 5000

MCMC samples with a burn-in of 1250 iterations and m = 15 nearest neighbors.

Kriging

In methods EQM_grid and EQM_krig daily GHCND station values and bias-corrected

WRF values at station locations were interpolated to the 1km grid with non-Bayesian

kriging. Non-Bayesian kriging can also be understood in the context of Gaussian pro-

cesses. As in (5.1), spatial variates Y = s1...sn are assumed to follow a multivariate

normal distribution [112]. A general expression for the spatial model is

Y = Xβ + ϵ, where ϵ ∼ N(0, Σ), (5.3)
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where the covariance matrix, assuming a nugget effect τ 2 is Σ = σ2H(ϕ)+τ 2I, and

H(ϕ)ij = ρ(ϕ; dij) for a valid correlation function ρ. The function h(y) that minimizes

the mean square error, E [(Y (s0) − h(y))2|y], is called the kriging predictor.

It can be shown (e.g. [112]) that the kriging predictor at a new location, Y ∗(s0),

takes the form:

Y ∗(s0) =
N∑

i=1
λiY (si),

where s0 is a new location at which a prediction is to be made, and λi are weights

chosen such that they satisfy the conditions of unbiasedness and minimize the kriging

variance [112]. Unlike Bayesian kriging, covariance parameters must be estimated

from the data.

Based on inspection of empirical variograms, we used the exponential covariance

function (5.2) for all model fits (ϕ = 150 km, σ2 = 15, and τ 2 = 0.2).

Inverse distance weighting

Inverse distance weighting (IDW) is a deterministic interpolation technique, so the

size of prediction errors cannot be quantified [136]. Interpolated values are based

on a weighted average of n nearest-neighbor observations. In IDW, observed values

close to prediction locations are assumed to be more influential in the prediction

compared to observed values far from prediction locations. As the power, p and the

number of nearest neighbors n increases, the smoothness of the interpolated surface

increases. IDW is an exact interpolator, which means that if a prediction location,

s0 corresponds to an observed location si, the predicted value at s0 will be identical

to the value at location si. The general equations for IDW are as follows:
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Y (s0) =
n∑

i=1
wi(s0)Y (si),

wi(s0) = w̃i(s0)∑n
ℓ=1 wℓ(s0)

,

w̃i(s0) = 1
d(si, s0)p

.

The IDW interpolated value at location s0 is Y (s0), d(si, s0) is the distance be-

tween observed location si and prediction location s0, n is the number of nearest-

neighbor observed locations that contribute to the interpolated value Y (s0), and p is

the power parameter.

Topographic downscaling

Topographic downscaling is a variation on IDW that is often used for high resolution

downscaling [31]. Topographic downscaling consists of three main steps:

1. Construction of a historical, empirical lapse rate (relationship between TMAX

and elevation using simple linear regression);

2. Adjustment of WRF data to reference elevation (200m) using estimated lapse

rate parameters and interpolation of adjusted WRF data to desired locations;

3. Back-transformation of interpolated values using estimated lapse rate parame-

ters.

Following methods by [31] and [12], we utilized historical (1970-1999) GHCND

station records to calculate historical, elevational lapse rates for TMAX, using stations
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with at least 70% complete records. We estimated the elevational lapse rates for

TMAX with a linear regression of the form (5.4):

Tsta = T0 − βϕsta − γzsta, (5.4)

where Tsta is the long-term average station TMAX, T0 is the intercept, β is the

coefficient for GHNCD station latitude (ϕsta), and γ is the coefficient for station

elevation (zsta).

Estimates for β and γ were -1.43 and -0.0059, respectively (Figure 5.1). The

estimate of the elevation coefficient, β, refers to an elevational lapse rate of 5.9◦Ckm−1,

which corresponds closely to that found by [31], as well as the standard elevational

lapse rate (6.0◦Ckm−1) [133].

WRF TMAX simulations were translated to reference elevation with (5.5)

TW RF, ref = TW RF − γ(zref − zW RF ), (5.5)

where Tmodel,ref is the value of TMAX (◦ C) at reference elevation, TW RF is the WRF

TMAX value (◦C), γ is the estimated lapse rate (◦Cm−1) from 5.4, zref is the reference

elevation (m), and zW RF is WRF geopotential height (m).

Next, the transformed WRF data were interpolated to GHNCD station locations

using IDW. We used a weight of 2 and 9 nearest neighbors for all IDW interpolation,

following methods by [31]. Interpolated WRF data were back-transformed to reflect

the effect of elevation (5.6)

Tsta, interp = Tref, interp − γ(zsta − zref ). (5.6)
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In (5.6) Tsta,interp is the elevation-adjusted value for TMAX, Tref,interp is the inter-

polated WRF value at a GHCND station location at reference elevation and zsta and

zref are the GHCND station and reference elevations. After back-transforming inter-

polated values at GHCND station locations, we applied empirical quantile mapping

(EQM) at each station location.

Xcorr,t = ecdf−1
obs,m(ecdfraw,m(Xraw,t)), (5.7)

In (5.7), Xcorr,t is the corrected daily value for TMAX on day t, ecdf−1
obs,m is the

inverse ecdf of GHCND station data for month m, and ecdfraw,m is the ecdf of the

WRF data for month m, and Xraw,t is the uncorrected WRF TMAX value on day

t. Next, bias-corrected WRF data at GHCND station locations were translated to

reference elevation with (5.8)

TEQM, ref = TEQM − γ(zref − zsta), (5.8)

where TEQM, ref is the bias corrected, interpolated value for TMAX (◦ C) at reference

elevation, TEQM is the bias corrected, WRF interpolation at a GHCND station loca-

tion (◦C), and γ, zref and zsta are as defined in (5.6). Finally, the reference-adjusted,

bias- corrected WRF interpolations at GHCND station locations were again interpo-

lated to a 1km grid using IDW:
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Y (s0) =
n∑

i=1
wi(s0)Y (si),

wi(s0) = w̃i(s0)∑n
ℓ=1 wℓ(s0)

,

w̃i(s0) = 1
d(si, s0)p

.

In this context, Y (s0) is the IDW interpolated TMAX value at fine-scale grid cell

s0, Y (si) is the value at station location si, d(s0, si) is the distance between GHCND

station location si and the center of fine-scale grid cell s0, and n and p were set to

9 and 2, respectively. Finally, the high-resolution values were translated to actual

elevation with (5.9)

Tfine, interp = Tref, interp − γ(zfine − zref ). (5.9)

In (5.9), Tfine, interp is the final downscaled value on the fine-scale grid, Tref, interp

is the interpolated temperature value at reference elevation, zfine is the elevation at

the fine-scale grid, and γ and zref are as defined in (5.6).
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Figure 5.1: Elevational lapse rate adjustment for TMAX. Note: the elevational lapse rate
did not change appreciably with omission of the two high elevation stations.

Evaluation of downscaling and bias-correction

methods using an alternative performance

metric: sorted RMSE

An alternative metric for assessing distributional similarity of observed and simulated

data is sorted RMSE. Since PSS is more widely in the climate literature than sorted

RMSE, we reported results for PSS in the main manuscript. Sorted RMSE (SRMSE)

was calculated in the same way as RMSE, except that both bias-corrected and ob-

served daily TMAX values were sorted from least to greatest prior to calculations.

The full ANOVA model included the same variables as the models for RMSE and
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PSS (Table 5.8). The final ANOVA model included the main effects Month, Bias_-

correction_years, and Method as well as the interaction terms Month × Method and

Bias_correction_years × Method (Table 5.7).

The results for sorted RMSE were very similar to those of PSS. Generally, SRMSE

values improved when bias-correction was based on the 1980-2014 GHCND dataset

compared to the 1980-1989 GHCND dataset. LT_grid performed worst overall re-

gardless of whether the 1980-1989 or 1980-2014 GHCND dataset was used for bias-

correction (Figures 5.2 and 5.3). Similar to PSS, SRMSE exhibited less monthly

variation.

The interaction of Month × Method was significant, and the interaction was most

apparent for LT_grid, and estimated mean marginal SRMSE of LT_grid was signif-

icantly greater than that of all other methods in months 1-5 (Figure 5.4).

The interaction Method × Bias_correction_years was significant, and the inter-

action plot (Figure 5.5) shows that while EQM_IDW, EQM_krig, and EQM_grid

performed better when bias correction was done with the 1980-2014 GHCND dataset,

LTQM_grid_C and LTQM_grid_V performed better when the 1980-1989 GHCND

dataset was used for bias-correction. LT_grid performed worst overall regardless of

whether the 1980-2014 or 1980-1989 GHCND dataset was used for bias-correction.

Estimated mean marginal SRMSE was significantly greater than that of all other

methods when either the 1980-2014 or 1980-1989 GHCND dataset was used for bias-

correction. Similar to results for PSS, the interaction Method × Elevation was not

significant.
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Table 5.7: ANOVA table for final SRMSE model.

Df Sum Sq Mean Sq F value Pr(>F)
Month 11 2.56 0.23 10.01 0.0000
Bias_correction_years 1 6.09 6.09 261.56 0.0000
Method 5 8.30 1.66 71.37 0.0000
Month × Method 55 5.07 0.09 3.96 0.0000
Method × Bias_correction_years 5 3.82 0.76 32.79 0.0000
Residuals 210 4.89 0.02

Figure 5.2: Mean SRMSE by Method and Bias_correction_years, where "1980-1989" and
"1980-2014" denote the GHCND station datasets used to bias-correct 1990-2014 and 1980-
2014 WRF simulations, respectively. Error bars represent standard errors over five spatial
cross-validation folds. “WRF_interp” denotes raw WRF simulations interpolated to station
locations and are shown to indicate relative improvement of all methods over raw WRF
interpolated values.
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Figure 5.3: Mean SRMSE by Method, Month, and Bias_correction_years, where "1980-
1989" and "1980-2014" denote the GHCND station datasets used to bias-correct 1990-2014
and 1980-2014 WRF simulations, respectively. Error bars represent standard errors over five
spatial cross-validation folds. “WRF_interp” denotes raw WRF simulations interpolated to
station locations and are shown to indicate relative improvement of all methods over raw
WRF interpolated values.
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Figure 5.4: Interaction plot showing estimated mean marginal SRMSE for the interaction
Method × Month. Error bars represent 95% confidence intervals.
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Figure 5.5: Interaction plot showing estimated mean marginal SRMSE for the interaction
Method × Bias_correction_years, where "1980-1989" and "1980-2014" denote the GHCND
station datasets used to bias-correct 1990-2014 and 1980-2014 WRF simulations, respec-
tively. Error bars represent 95% confidence intervals. “WRF_interp” denotes raw WRF
simulations interpolated to station locations and are shown to indicate relative improvement
of all methods over raw WRF interpolated values.

Table 5.8: ANOVA table for full SRMSE model

Df Sum Sq Mean Sq F value Pr(>F)
Month 11 2.56 0.23 9.65 0.0000
Method 5 8.30 1.66 68.81 0.0000
Bias_correction_years 1 6.09 6.09 252.18 0.0000
Elevation 1 0.03 0.03 1.19 0.2769
Month × Method 55 5.07 0.09 3.82 0.0000
Method × Bias_correction_years 5 3.82 0.76 31.62 0.0000
Method × Elevation 5 0.06 0.01 0.49 0.7867
Bias_correction_years × Elevation 1 0.01 0.01 0.58 0.4490
Method:Bias_correction_years × Elevation 5 0.01 0.00 0.06 0.9980
Residuals 198 4.78 0.02
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Topographic downscaling

Inverse distance weighting (IDW) is a deterministic interpolation technique, so the

size of prediction errors cannot be quantified [136]. Interpolated values are based

on a weighted average of n nearest-neighbor observations. In IDW, observed values

close to prediction locations are assumed to be more influential in the prediction

compared to observed values far from prediction locations. As the power, p and the

number of nearest neighbors n increases, the smoothness of the interpolated surface

increases. IDW is an exact interpolator, which means that if a prediction location,

s0 corresponds to an observed location si, the predicted value at s0 will be identical

to the value at location si. The general equations for IDW are as follows:

Y (s0) =
n∑

i=1
wi(s0)Y (si),

wi(s0) = w̃i(s0)∑n
ℓ=1 wℓ(s0)

,

w̃i(s0) = 1
d(si, s0)p

.

The IDW interpolated value at location s0 is Y (s0), d(si, s0) is the distance be-

tween observed location si and prediction location s0, n is the number of nearest-

neighbor observed locations that contribute to the interpolated value Y (s0), and p is

the power parameter.

Topographic downscaling is a variation on IDW that is often used for high- reso-

lution downscaling [31]. Topographic downscaling consists of three main steps:
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1. Construction of a historical, empirical lapse rate (relationship between precipi-

tationTMAX and elevation);

2. Adjustment of raw model data to reference elevation (200m) using estimated

lapse rate parameters and interpolation of adjusted model data to desired loca-

tions using IDW;

3. Back-transformation of interpolated values using estimated lapse rate parame-

ters.

We estimated elevational lapse rates using methods by [31] and [12]. Elevational

lapse rates were calculated using historical (1970-1999) GHCND station records. Be-

cause precipitation has a nonlinear relationship with elevation [12], we estimated the

lapse rate with the nonlinear transformation in (5.10)

Psta = Pref

[
1 + χ(zsta − zref )
1 − χ(zsta − zref )

]
, (5.10)

where Psta is the mean daily precipitation at a GHCND station location, Pref is the

reference precipitation (mean daily precipitation at the reference elevation), χ is the

elevational lapse rate (◦Cm−1), and zsta and zref are the station and reference eleva-

tions (m), respectively. The reference elevation was set to the median elevation (200

m), following the methods of [31]. The parameter χ was estimated using nonlinear-

weighted least squares with the function nls in R. Our result for the elevational lapse

rate (0.00025) corresponded to that found by [31].

Next, transformed model data were interpolated to GHNCD station locations

using IDW. We used a weight of 2 and 9 nearest neighbors for all IDW interpolation,

following methods by [31]. Interpolated daily precipitation values interpolated to the
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fine-scale grid were back-transformed using (5.11):

Pfine, interp = Pref, interp

[
1 + χ(zfine − zref )
1 − χ(zfine − zref )

]
, (5.11)

where Pfine, interp, elevation-adjusted high resolution precipitation value, and Pref, interp

is the interpolated precipitation value at reference elevation.

Bayesian ANOVA details

Table 5.9 shows pairwise comparisons for log-transformed MAE and MAE95 metrics

among EQM-, EQM-LIN-corrected, and raw model data. The intercept, β0 and

coefficient β1 were both given N(0, 1 × 10−6) priors, and a Unif(0, 100) prior was

used for the standard deviation, σ. All models were run with 30,000 iterations with a

burn-in of 3000 and three Markov-chain-Monte-Carlo (MCMC) chains. Convergence

of MCMC chains was assessed ocularly with trace plots. Pairwise comparisons were

computed using Tukey’s method [211].

258



Table 5.9: Pairwise comparisons of posterior means of log-transformed MAE and MAE95
metrics among EQM-, EQM-LIN- corrected, and raw model (Mod) data. ‘Lower’ and ‘Up-
per’ denote lower and upper 95% highest posterior density (HPD) intervals, and ‘Std Error’
refers to the standard error of the difference in means of posterior distributions. Significant
comparisons at the 5% significance levels are denoted with (*).

Difference estimate Estimate Std Error Lower Upper

MAE95

EQM - EQM-LIN* 0.926 0.173 0.583 1.26

Mod - EQM-LIN* 1.63 0.172 1.29 1.32

Mod - EQM* 0.702 0.172 0.367 1.04

MAE

EQM - EQM-LIN 0.0751 0.110 -0.142 0.290

Mod - EQM-LIN* 0.433 0.110 0.217 0.647

Mod - EQM* 0.359 0.110 0.139 0.573
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Figure 5.6: Posterior density of log-transformed MAE (mm) for EQM-, EQM-LIN- cor-
rected, and raw model (Mod) data. Plots are computed from posterior draws with all chains
merged. Median values are denoted by vertical lines, and shaded areas denote the 50% cred-
ible interval around the median.
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Figure 5.7: Posterior density of log-transformed MAE95 (mm) for EQM-, EQM-LIN- cor-
rected, and raw model (Mod) data. Plots are computed from posterior draws with all chains
merged. Median values are denoted by vertical lines, and shaded areas denote the 50% cred-
ible interval around the median.
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Figure 5.8: Posterior means (black dots) of differences for log-transformed MAE (mm)
among EQM-, EQM-LIN- corrected, and raw model (Mod) data. Black lines denote 95%
credible intervals. Credible intervals that cross the dotted line are not considered significant
at the 5% significance level.
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Figure 5.9: Posterior means (black dots) of differences for log-transformed MAE95 (mm)
among EQM-, EQM-LIN- corrected, and raw model (Mod) data. Black lines denote 95%
credible intervals. Credible intervals that cross the dotted line are not considered significant
at the 5% significance level.

Additional bias-correction methods

In addition to EQM-LIN and EQM, we also evaluated distribution mapping (DM)

using the gamma distribution (DM-GAMMA) and a hybrid DM approach using EQM

for correcting the bulk of model data and the generalized Pareto distribution (GPD)

for correcting upper quantiles (EQM-GPD). DM-GAMMA is a common method for

bias-correcting model precipitation data [45], [57], [61], and EQM-GPD has been

shown to outperform DM-GAMMA in correcting extreme tails [66], [107]. We also

included quantile delta mapping (QDM) [47], a trend-preserving method that is less

susceptible to overfitting on calibration data and has been shown to effectively correct
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precipitation extremes [47]. We refer the reader to [47] for a detailed explanation of

QDM. DM-GAMMA was implemented using the qmap package [61] in R. EQM-GPD

was implemented using a combination of functions from the qmap package as well as

custom code. Bias-correction via QDM was carried out using the MBC package [47] in

R.

DM-GAMMA

Bias-correction correction via DM is accomplished through the use of a transfer func-

tion (TF) that minimizes the difference between the cumulative distribution functions

(CDFs) of model and observed data [53]. The Gamma distribution is frequently used

to model wet-day precipitation and is often used for bias-correction via DM [45], [57],

[61]. Here, we use the Bernoulli-Gamma distribution, a mixture model. The Bernoulli

distribution is models the occurrence of zeros with probability of 1-p, while precipita-

tion values greater than 0 are fit to the Gamma distribution. The probability density

function (PDF) of the Bernoulli-Gamma distribution is expressed as:

f(x) =


p · γ(x) if x > 0

1 − p if x ≤ 0

The Gamma pdf is specified as

γ(x|θ, k) = e−x/θxk−1

Γ(k)θk
,

where f(P |θ, k) is the Gamma PDF, P is daily wet-day precipitation, k and θ are

the shape and scale parameters, respectively, and Γ is the Gamma function [58]. The
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corrected daily precipitation value, xcorr,t can be expressed via the TF as:

xcorr,t = F −1
obs(Fmod(xmod,t|θmod, kmod)|θobs, kobs), (5.12)

where xcorr,t is the corrected daily precipitation value, F −1
obs is Gamma-Bernoulli

quantile function for observed data, F −1
mod denotes the Gamma-Bernoulli cumulative

distribution function (CDF) for observed data; xmod,t is the model precipitation value

on day t, and θmod, kmod, θobs, kobs are estimated shape and rate parameters of fitted

Gamma CDFs for model and observed data, respectively. Rate and scale parame-

ters were estimated using the method of maximum likelihood. Observed and model

precipitation distributions were estimated using 10,000 quantiles.

EQM-GPD

EQM-GPD is a hybrid approach in which daily model precipitation below a specified

threshold were corrected using EQM, while TFs for precipitation values above the

threshold were constructed by fitting observed and model data to GPD distributions

[106]. The GPD distribution function with shape and scale parameters ξ and σ is

given by (5.13)

f(y) =


1
σ
(1 − ξy/σ)

1
ξ

−1, ξ ̸= 0, σ > 0
1
σ
exp(−y/σ), ξ = 0, σ > 0

, (5.13)

where 0 ≤ y ≤ ∞ if ξ ≥ 0 and 0 ≤ y ≤ −σ/ξ if ξ < 0 [111]. The TF used to correct

daily model precipitation is:
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Pcorr,t =


ecdf−1

obs(ecdfmod(Pmod,t)), Xmod,t < ecdf−1
mod(τGP D)

F −1
obs(Fmod(Pmod,t|ξmod, σmod)|ξobs, σobs), Pmod,t > ecdf−1

mod(τGP D).
(5.14)

In (5.14), Pcorr,t is the corrected daily precipitation value, FP and F −1
P denote the

CDF and quantile function of the GPD, respectively, Pmod,t is the model precipitation

value on day t, θ and k are estimated shape and rate parameters, and 0 < τGP D < 1.

We chose the threshold to be the 95th quantile of observed or model precipitation, be-

cause we found that values above the 95th quantiles of both model and observed data

could be adequately fitted to GPDs. Use the of 95th quantile agrees with previous

studies [66], [107] in which GPDs were used for bias-correction approaches. Various

approaches have been used to select the threshold; [65], [66], and [107] used the 95th

quantile, [212] used the 95th or 99th quantile, [101] estimated the threshold using

a probability weighted moments estimator, and [213] inspected mean-excess plots.

Thus, we define τGP D = 0.95 as the value at which ecdf−1
obs and ecdf−1

mod are evaluated.

To clarify, although τGP D = 0.95, the actual quantile values (in mm precipitation)

varied for each month and data type (observed and model) as ecdf−1
obs(τGP D) is not

necessarily equal to ecdf−1
mod(τGP D) for a given month. GPDs were fit to observed and

model data using maximum likelihood (ML) with the R package ExtRemes [214].
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Results for additional bias-correction methods

MAE and MAE95

Bayesian ANOVAs were carried out to compared mean MAE and MAE95 among

all bias-correction methods. The analyses were conducted as described for the main

manuscript results.

MAE For mean MAE, QDM performed best, followed by EQM-LIN (although

results for QDM were not significantly different from those for EQM-LIN). DM-

GAMMA performed similarly to EQM, and EQM-GPD provided only a marginal

improvement over raw model data (Figure 5.10 a). (Table 5.10 shows all pairwise dif-

ferences; Figures 5.11, 5.12, 5.13 show posterior distributions, differences in posterior

distributions, and effect sizes, respectively for the MAE ANOVA analysis).
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Figure 5.10: Monthly mean MAE (mm) (a) and MAE95 (mm) (b) for raw model (Mod),
EQM-, EQM-LIN-, EQM-GPD-, DM-GAMMA, and QDM-corrected data. Please note the
difference in y-axes limits for plots a and b.
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Figure 5.11: Posterior densities of log-transformed MAE (mm) for EQM-, EQM-LIN-,
EQM-GPD, DM-GAMMA-, and QDM-corrected, and raw model (Mod) data. Plots are
computed from posterior draws with all chains merged. Median values are denoted by vertical
lines, and shaded areas denote the 50% credible interval around the median.
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Figure 5.12: Posterior densities of pairwise differences of log-transformed MAE (mm)
among EQM-, EQM-LIN-, EQM-GPD, DM-GAMMA-, and QDM-corrected, and raw model
(Mod) data. Plots are computed from posterior draws with all chains merged. Median values
are denoted by vertical lines, and shaded areas denote the 50% credible interval around the
median. Differences that are signficant are denoted with (*).
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Figure 5.13: Posterior means (black dots) of differences for log-transformed MAE95 (mm)
among EQM-, EQM-LIN-, EQM-GPD, DM-GAMMA-, and QDM-corrected, and raw model
(Mod) data. Black lines denote 95% credible intervals. HPD Credible intervals that cross
the dotted line are not considered significant at the 5% significance level; intervals that do
not include 0 are denoted with (*).
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Table 5.10: Pairwise comparisons of posterior means of log-transformed MAE among EQM-,
EQM-LIN- corrected, raw model (Mod), DM-GAMMA-, EQM-GPD-, and QDM-corrected
data. ‘Lower’ and ‘Upper’ denote lower and upper 95% highest posterior density (HPD)
intervals, and ‘Std Error’ refers to the standard error of the difference in means of posterior
distributions. HPD intervals that do not include 0 are denoted with (*).

Comparison Difference estimate Std Error Lower Upper
EQM-GPD - DM-GAMMA* 0.21 0.11 0.01 0.42

EQM-LIN - DM-GAMMA -0.11 0.11 -0.32 0.09
EQM - DM-GAMMA -0.04 0.10 -0.24 0.17

MOD - DM-GAMMA* 0.33 0.11 0.12 0.53
QDM - DM-GAMMA -0.19 0.11 -0.39 0.02

EQM-LIN - EQM-GPD* -0.32 0.10 -0.53 -0.12
EQM - EQM-GPD -0.25 0.11 -0.45 -0.04
MOD - EQM-GPD 0.11 0.11 -0.09 0.32

QDM - EQM-GPD* -0.40 0.11 -0.61 -0.20
EQM - EQM-LIN 0.07 0.10 -0.13 0.28

MOD - EQM-LIN* 0.43 0.11 0.22 0.64
QDM - EQM-LIN -0.08 0.11 -0.28 0.13

MOD - EQM* 0.36 0.11 0.15 0.57
QDM - EQM -0.15 0.11 -0.36 0.05

QDM - MOD* -0.51 0.11 -0.72 -0.31

MAE95 For mean MAE95, EQM-LIN performed significantly better than any other

method. Like results for MAE, DM-GAMMA performed similarly to EQM. EQM-

GPD performed worse and did not provide improvement over raw model data and,

in fact, increased MAE95 values for months 2,3,4,6,7 and 11 (Figure 5.10 b). While

QDM provided an overall significant improvement in MAE95 over raw model data,

the effect size was small (Figure 5.16). QDM provided no improvement over raw

model data during months in which extreme precipitation is already substantially

overestimated in raw model data (months 8, and 9) (Figure 5.10 b). (Table 5.11

shows all pairwise differences; Figures 5.14, 5.15, 5.16 show posterior distributions,

differences in posterior distributions, and effect sizes, respectively, for the MAE95

ANOVA analysis).
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Figure 5.14: Posterior densities of log-transformed MAE95 (mm) for EQM-, EQM-LIN-
, EQM-GPD, DM-GAMMA-, and QDM-corrected, and raw model (Mod) data. Plots are
computed from posterior draws with all chains merged. Median values are denoted by vertical
lines, and shaded areas denote the 50% credible interval around the median. Differences that
are signficant are denoted with (*).
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Figure 5.15: Posterior densities of pairwise differences of log-transformed MAE95 (mm)
among EQM-, EQM-LIN-, EQM-GPD, DM-GAMMA-, and QDM-corrected, and raw model
(Mod) data. Plots are computed from posterior draws with all chains merged. Median values
are denoted by vertical lines, and shaded areas denote the 50% credible interval around the
median.
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Figure 5.16: Posterior means (black dots) of differences for log-transformed MAE95 (mm)
among EQM-, EQM-LIN-, EQM-GPD, DM-GAMMA-, and QDM-corrected, and raw model
(Mod) data. Black lines denote 95% credible intervals. HPD credible intervals that cross
the dotted line are not considered significant at the 5% significance level; intervals that do
not include 0 are denoted with (*).
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Table 5.11: Pairwise comparisons of posterior means of log-transformed MAE95 among
EQM-, EQM-LIN- corrected, raw model (Mod), DM-GAMMA-, EQM-GPD-, and QDM-
corrected data. ‘Lower’ and ‘Upper’ denote lower and upper 95% highest posterior density
(HPD) intervals, and ‘Std Error’ refers to the standard error of the difference in means of
posterior distributions. HPD intervals that do not include 0 are denoted with (*).

Comparison Difference estimate Std error Lower Upper
EQM-GPD - DM-GAMMA* 0.89 0.15 0.60 1.18
EQM-LIN - DM-GAMMA* -0.89 0.15 -1.18 -0.60

EQM - DM-GAMMA 0.03 0.15 -0.26 0.32
MOD - DM-GAMMA* 0.73 0.15 0.44 1.03
QDM - DM-GAMMA* 0.43 0.15 0.13 0.71

EQM-LIN - EQM-GPD* -1.78 0.15 -2.07 -1.48
EQM - EQM-GPD* -0.85 0.15 -1.15 -0.56
MOD - EQM-GPD -0.15 0.15 -0.45 0.14

QDM - EQM-GPD* -0.46 0.15 -0.75 -0.17
EQM - EQM-LIN* 0.92 0.15 0.64 1.22
MOD - EQM-LIN* 1.62 0.15 1.33 1.91
QDM - EQM-LIN* 1.32 0.15 1.03 1.61

MOD - EQM* 0.70 0.15 0.41 0.99
QDM - EQM* 0.39 0.15 0.10 0.68
QDM - MOD* -0.31 0.15 -0.60 -0.01

ETCCDI indices

QDM and DM-GAMMA performed similarly to EQM and EQM-LIN with respect to

‘D’ and ‘S’ indices (Figures 5.17, 5.18). QDM and DM-GAMMA resulted in larger

underestimations of WetDays compared to EQM and EQM-LIN; however, distribu-

tions of TotalP calculated from DM-GAMMA- and QDM-corrected-data were similar

to those of observed data (Figure 5.19). SPI was overestimated by raw model and

all bias-corrected data. EQM-GPD performed worst overall, and bias-correction via

EQM-GPD adversely affected results for S90 and S95 compared to raw model data

(e.g. distributional discrepancies of S90 and S95 compared to observed data were

increased) (Figure 5.18). EQM-GPD provided some improvement over raw model
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data for TotalP, but the distribution of TotalP was still significantly different from

that of observed data (Figure 5.19). Overall, EQM-LIN and EQM resulted in larger

improvements to ETCCDI indices than any other bias-correction method tested in

this study.

Figure 5.17: Boxplots of a) D90, D95, and D99 for observed (Obs), model (Mod), EQM-,
EQM-LIN-, EQM-GPD-, DM-GAMMA, and QDM-corrected data. Boxplots reflect 30 an-
nual values for each data type and ETCCDI index. Significance of KS-tests of distributional
similarity of Mod, EQM, EQM-LIN, EQM-GPD, DM-GAMMA, or QDM, compared to Obs
at α = 0.05, adjusted with the Holm-Bonferroni method, are indicated with (*); dots denote
outliers.
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Figure 5.18: D90, D95, and D99 for observed (Obs), model (Mod), EQM-, EQM-LIN-,
EQM-GPD-, DM-GAMMA, and QDM-corrected data. Boxplots reflect 30 annual values for
each data type and ETCCDI index. Significance of KS-tests of distributional similarity of
Mod, EQM, EQM-LIN, EQM-GPD, DM-GAMMA, or QDM, compared to Obs at α = 0.05,
adjusted with the Holm-Bonferroni method, are indicated with (*); dots denote outliers.
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Figure 5.19: Boxplots of TotalP, WetDays, and SPI for observed (Obs), model (Mod),
EQM-, EQM-LIN-, EQM-GPD-, DM-GAMMA, and QDM-corrected data. Boxplots reflect
30 annual values for each data type and ETCCDI index. Significance of KS-tests of distribu-
tional similarity of Mod, EQM, EQM-LIN, EQM-GPD, DM-GAMMA, or QDM, compared
to Obs at α = 0.05, adjusted with the Holm-Bonferroni method, are indicated with (*); dots
denote outliers.

A visual examination of WRF wet bias

with respect to observed data

The excess of low-precipitation days in raw model data can be visualized with his-

tograms. Histograms in Figures 5.20 and 5.21 show the percent contribution to to-

tal monthly precipitation within 2mm bin widths for the entire distribution of raw

model and observed data by month. In nearly all months, the contribution of low-

precipitation amounts to total precipitation is greater for raw model compared to

observed data. The difference is most striking for summer and early fall months.
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Figure 5.20: Proportion contribution to total daily precipitation by 2mm bin widths for
months 1-6 over the calibration period 1976-2005. Raw model data are denoted by black
lines, and observed data are denoted by red lines.
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Figure 5.21: Proportion contribution to total daily precipitation by 2mm bin widths for
months 7-12 over the calibration period 1976-2005. Raw model data are denoted by black
lines, and observed data are denoted by red lines.
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WRF physics settings

Table 5.12: Physics settings and details for the WRF model

Setting Details

Microphysics

WRF Single–moment 6–class Scheme (Hong, S.–Y., and J.–O. J. Lim, 2006:
The WRF single–moment 6–class
microphysics scheme (WSM6).
J. Korean Meteor. Soc., 42, 129–151.)

Radiation

RRTMG Shortwave and Longwave Schemes (Iacono, M. J., J. S.
Delamere, E. J. Mlawer, M.
W. Shephard, S. A. Clough, and W. D. Collins, 2008:
Radiative forcing by long–lived
greenhouse gases: Calculations with the
AER radiative transfer models. J. Geophys.
Res., 113, D13103. doi:10.1029/2008JD009944)

Boundary layer

Mellor–Yamada–Janjic Scheme (MYJ) (Janjic, Zavisa I., 1994: The Step–Mountain Eta
Coordinate Model: Further developments of the convection, viscous sublayer, and
turbulence closure schemes. Mon.
Wea. Rev., 122, 927–945.
doi:10.1175/1520-0493(1994)122%3c0927:TSMECM%3e2.0.CO;2)

Cumulus convection

New Simplified Arakawa–Schubert Scheme (for Basic WRF)
(Han, Jongil and Hua–Lu Pan, 2011:
Revision of convection and vertical
diffusion schemes in the NCEP Global Forecast System.
Wea. Forecasting, 26, 520–533. doi:10.1175/WAF-D-10-05038.1)

Land surface physics

Unified Noah Land Surface Model
(Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A.
LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel,
and R. H. Cuenca, 2004: Implementation and
verification of the unified NOAH land surface model in the WRF model. 20th conference on
weather analysis
and forecasting/16th conference on numerical weather prediction,
pp. 11–15.)

Surface layer physics

Eta Similarity Scheme (Janjic, Z. I., 1994:
The step-mountain Eta coordinate model: further
developments of the convection,
viscous sublayer and turbulence closure schemes. Mon. Wea.
Rev., 122, 927–945.
doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2)
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ate to enforce periodicity for fitted seasonal means and standard deviations.

2. Figure S2. Elevational lapse rate adjustment for TMAX.

3. Figure S3. Cross-validated results of MAE(◦C) for uncorrected model (MOD),

and EQM- and DMTA-corrected data (without temporal adjustment) relative to

observed data during the historical period (1976-2005) over day of year (DOY).

4. Figure S4. EQM transfer function (TF) for month 12.

5. Figure S5. Boxplots showing the distribution of daily, spatially-explicit, uncor-

rected, bias-corrected model, and observed data (◦C) for month 12 during the

historical time period (1976-2005).

6. Figure S6. Boxplots showing the distribution of daily, spatially-explicit, uncor-

rected and bias-corrected model data (◦C) for month 12 during a future time

period (2090-2099). Data at the 78 GHCND locations are represented in this

plot.

7. Table S1. Mean daily TMAX (◦C) for observed and model data by month

during 1976-2005.

8. Table S2. Monthly standard deviations (SDs) (◦C) for observed and model data

by month during 1976-2005.
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HetGP details: enforcing periodicity

The input data to the HetGP model [199] was manipulated such that resulting model

predictions of the seasonal means and standard deviations for were periodic. The

spatially averaged time series T(·) was input three times, and an additional 50 days

were added on at the beginning and end of the input vector. The time covariate was

modified as shown in Figure S1. Predictions were only made over the middle portion

of the input vector (timestep = 366 to 730), and these predictions were periodic.

Figure S1. The input data to the HetGP model [199] and modified time covariate to enforce
periodicity.
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Implementing EQM with temporal adjust-

ment via a process convolution approach

To implement EQM with temporal adjustment, data processing and temporal adjust-

ment steps in sections 4.3.3-4.3.5 were followed. The resulting temporally-adjusted

time series, W̃Mod, was back-transformed, except only estimate trends derived from

model data (rather than observed data) were used. Let T̃∗
Mod be the resulting back-

transformed, (spatially averaged) time series; then, spatially-explicit model data were

adjusted as follows:

TMod∗
i,t

= b × TModi,t
+ a,

a = T̃ ∗
Mod,t − TMod,t ×

α∗
Mod,t

αMod,t

,

b =
α∗

Mod,t

αMod,t

. (5.15)

In (5.15) T ∗
Modi,t

is the temporally-adjusted daily model value at location i and day

t. TModi,t
is the (unadjusted) model value at location i and day t; T̃ ∗

Mod,t is the value

of T̃∗
Mod on day t, TMod,t is the value of TMod on day t. Finally, α∗

Mod,t and αMod,t

are seasonal SDs derived from temporally-adjusted and unadjusted model data, re-

spectively. This linear transformation ensures that daily means and SDs of spatially-

explicit model data match those of T̃∗
Mod, for all t ∈ T . Finally, EQM was carried out

on a monthly basis using temporally-adjusted, spatially explicit model (from 5.15)

and observed data. EQM with temporal adjustment was carried out in this manner
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because EQM is typically carried out using spatially explicit model data. There-

fore, the temporal dependence of spatially-averaged model data was corrected, and

the linear transformation in (5.15) to was applied to spatially explicit model values

to reflect the temporal adjustment. Then, EQM was carried out using (adjusted),

spatially-explicit model data.

Cross-validation

During cross-validation, estimates of σ2
xℓ,Obs

and σ2
w,Obs corresponding to each observed

training set were used to adjust temporal dependence of all model data in each fold

following steps in sections 4.3.3-4.3.4.

During the back-transformation, only trends derived from model data (αMod,

δMod, andcMod) were used. Thus, after the back-transformation, only the temporal

dependence of model data is adjusted. Next, the linear transformation in (5.15) was

applied to all spatially-explicit model values. After this step, spatially-explicit model

data reflect the adjustment of temporal adjustment. Next, these spatially explicit

model values were split into training and testing sets. Finally, EQM was carried out

on a monthly basis using the adjusted, spatially-explicit, daily model data as well as

observed data in training sets, and bias-correction was applied to spatially-explicit

model values in test sets.
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Extended discussion of effects of bias-

correction on extreme quantiles

We provide an example of how DMTA and EQM perform for calibration and future

simulations (2090-2099) for month 12. During the calibration period, the EQM TF

for month 12 is somewhat parallel to the 1:1 line until the 99th model quantile (17◦C),

when it increases sharply (Figure S4). While model quantiles below the sharp increase

are increased by 1.7◦C to 3◦C, quantiles falling within the sharply increasing tail are

increased by nearly 15◦C. This sharp increase is due to the differences in maximum

values of model and observed during the calibration period. The shape of the TF at

tails is highly uncertain, as data in tails are, by definition, scarce. We also note that

after the TF increases sharply, it becomes linear again (blue dashed line in Figure S4)

and represents the extrapolation proposed by [75]. During the calibration period, the

tail of the TF has little impact on the correction, and generally, model data corrected

by EQM and DMTA are very similar (Figure S5). However, as temperatures rise in

the future, it becomes increasingly likely that more model values will be transformed

by the tail of the EQM TF, and consequently, those values will be increased substan-

tially. Figure S6 shows daily boxplots for uncorrected, EQM-, and DMTA-corrected

model data during the years 2090-2099. Because model values are more frequently

transformed by the tail of the EQM TF, proportionately more model values are be-

ing increased substantially, resulting in potential artifacts. These inflated values are

apparent in the boxplots for days 6, 9, 10, 11, 12, 21, 22, 23, and 24 in Figure S6. In

contrast, because the correction of seasonal means and SDs applied in DMTA changes
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smoothly over day of year, the correction remains much more consistent.

Inverse distance weighting

Inverse distance weighting (IDW) is a deterministic interpolation technique, so the

size of prediction errors cannot be quantified [136]. Interpolated values are based on

a weighted average of n nearest-neighbor observations. In IDW, observed values close

to prediction locations are assumed to be more influential in the prediction compared

to observed values far from prediction locations. As the power p and the number of

nearest neighbors n increases, the smoothness of the interpolated surface increases.

IDW is an exact interpolator, which means that if a prediction location s0 corresponds

to an observed location si, the predicted value at s0 will be identical to the value at

location si. The general equations for IDW are as follows:

Y (s0) =
n∑

i=1
wi(s0)Y (si),

wi(s0) = w̃i(s0)∑n
ℓ=1 wℓ(s0)

,

w̃i(s0) = 1
d(si, s0)p

.

The IDW interpolated value at location s0 is Y (s0), d(si, s0) is the distance be-

tween observed location si and prediction location s0, n is the number of nearest-

neighbor observed locations that contribute to the interpolated value Y (s0), and p is

the power parameter.
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Topographic downscaling

Topographic downscaling is a variation on IDW that is often used for high resolution

downscaling [31]. Topographic downscaling consists of three main steps:

1. Construction of a historical, empirical lapse rate (relationship between TMAX

and elevation using simple linear regression);

2. Adjustment of WRF data to reference elevation (200m) using estimated lapse

rate parameters and interpolation of adjusted WRF data to desired locations;

3. Back-transformation of interpolated values using estimated lapse rate parame-

ters.

Following methods by [31] and [12], we utilized historical (1970-1999) GHCND

station records to calculate historical, elevational lapse rates for TMAX, using stations

with at least 70% complete records. We estimated the elevational lapse rates for

TMAX with a linear regression of the form (5.16):

Tsta = T0 − βϕsta − γzsta, (5.16)

where Tsta is the long-term average station TMAX, T0 is the intercept, β is the

coefficient for GHNCD station latitude (ϕsta), and γ is the coefficient for station

elevation (zsta).

Estimates for β and γ were -1.43 and -0.0059, respectively (Figure S1). The

estimate of the elevation coefficient, β, refers to an elevational lapse rate of 5.9◦Ckm−1,

which corresponds closely to that found by [31], as well as the standard elevational

lapse rate (6.0◦Ckm−1) [133].
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WRF TMAX simulations were translated to reference elevation with (5.17)

TW RF, ref = TW RF − γ(zref − zW RF ), (5.17)

where Tmodel,ref is the value of TMAX (◦ C) at reference elevation, TW RF is the

WRF TMAX value (◦C), γ is the estimated lapse rate (◦Cm−1) from 5.16, zref is the

reference elevation (m), and zW RF is WRF geopotential height (m).

Next, the transformed WRF data were interpolated to GHNCD station locations

using IDW. We used a weight of 2 and 9 nearest neighbors for all IDW interpolation,

following methods by [31]. Interpolated WRF data were back-transformed to reflect

the effect of elevation (5.18)

Tsta, interp = Tref, interp − γ(zsta − zref ). (5.18)

In (5.18) Tsta,interp is the elevation-adjusted value for TMAX, Tref,interp is the inter-

polated WRF value at a GHCND station location at reference elevation and zsta and

zref are the GHCND station and reference elevations. After back-transforming inter-

polated values at GHCND station locations, we applied empirical quantile mapping

(EQM) at each station location.

Xcorr,t = ecdf−1
obs,m(ecdfraw,m(Xraw,t)), (5.19)

In (5.19), Xcorr,t is the corrected daily value for TMAX on day t, ecdf−1
obs,m is the

inverse ecdf of GHCND station data for month m, and ecdfraw,m is the ecdf of the

WRF data for month m, and Xraw,t is the uncorrected WRF TMAX value on day

t. Next, bias-corrected WRF data at GHCND station locations were translated to
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reference elevation with (5.20)

TEQM, ref = TEQM − γ(zref − zsta), (5.20)

where TEQM, ref is the bias corrected, interpolated value for TMAX (◦ C) at reference

elevation, TEQM is the bias corrected, WRF interpolation at a GHCND station loca-

tion (◦C), and γ, zref and zsta are as defined in (5.18). Finally, the reference-adjusted,

bias- corrected WRF interpolations at GHCND station locations were again interpo-

lated to a 1km grid using IDW:

Y (s0) =
n∑

i=1
wi(s0)Y (si),

wi(s0) = w̃i(s0)∑n
ℓ=1 wℓ(s0)

,

w̃i(s0) = 1
d(si, s0)p

.

In this context, Y (s0) is the IDW interpolated TMAX value at fine-scale grid cell

s0, Y (si) is the value at station location si, d(s0, si) is the distance between GHCND

station location si and the center of fine-scale grid cell s0, and n and p were set to

9 and 2, respectively. Finally, the high-resolution values were translated to actual

elevation with (5.21)

Tfine, interp = Tref, interp − γ(zfine − zref ). (5.21)

In (5.21), Tfine, interp is the final downscaled value on the fine-scale grid, Tref, interp

is the interpolated temperature value at reference elevation, zfine is the elevation at
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the fine-scale grid, and γ and zref are as defined in (5.6).

Figure S2. Elevational lapse rate adjustment for TMAX. Note: the elevational lapse rate
did not change appreciably with omission of the two high elevation stations.
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Figure S3. Cross-validated results of MAE(◦C) for uncorrected model (MOD), and EQM-
and DMTA-corrected data (without correction of temporal dependence) relative to observed
data during the historical period (1976-2005) over day of year (DOY). Averages over 14-day
increments of DOY are overlaid to aid interpretation of the plot. Data are averaged over
the 78 GHCND station locations and DOY.
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Figure S4. EQM transfer function (TF) (black line) for month 12 constructed using 1000
quantiles of observed and model data during the historical period (1976-2005). The shape
of the TF beyond the range of data values is shown by the blue dashed line. The lines at
a, b, and c show examples of how much model values are changed via the TF. At a), the
TF increases a model value of 5◦C to 6.7◦C. At b) a model value increases from 18◦C to
32.9◦C, and at c) a model value of 22◦C increases to 36.9◦C. The correction at b) results
in much larger increases in model values between 17.9 and 32.8◦C, as the shape of the TF
increases sharply. Furthermore, the correction at b) is unreliable, as that portion of the TF
is based on interpolation of the maximum quantiles of model and observed data.

297



Fi
gu

re
S5

.
B

ox
pl

ot
s

sh
ow

in
g

th
e

di
st

ri
bu

tio
n

of
da

ily
,

sp
at

ia
lly

-e
xp

lic
it,

un
co

rr
ec

te
d,

bi
as

-c
or

re
ct

ed
m

od
el

,
an

d
ob

se
rv

ed
da

ta
(◦ C

)
fo

r
m

on
th

12
du

ri
ng

th
e

hi
st

or
ic

al
tim

e
pe

ri
od

(1
97

6-
20

05
).

D
at

a
at

th
e

78
G

H
C

N
D

lo
ca

tio
ns

ar
e

re
pr

es
en

te
d

in
th

is
pl

ot
.

298



Fi
gu

re
S6

.
B

ox
pl

ot
s

sh
ow

in
g

th
e

di
st

ri
bu

tio
n

of
da

ily
,s

pa
tia

lly
-e

xp
lic

it,
un

co
rr

ec
te

d
an

d
bi

as
-c

or
re

ct
ed

m
od

el
da

ta
(◦ C

)
fo

r
m

on
th

12
du

ri
ng

a
fu

tu
re

tim
e

pe
ri

od
(2

09
0-

20
99

).
D

at
a

at
th

e
78

G
H

C
N

D
lo

ca
tio

ns
ar

e
re

pr
es

en
te

d
in

th
is

pl
ot

.
N

ot
e

th
e

hi
gh

fre
qu

en
cy

of
T

M
A

X
va

lu
es

gr
ea

te
r

th
an

20
◦ C

in
EQ

M
-c

or
re

ct
ed

da
ta

.

299



Table S1. Mean daily TMAX (◦C) for observed and model data by month during 1976-2005.
Means are calculated using model data downscaled to the 78 GHCND station locations and
GHCND station data.

MONTH Mean
Obs Mod

1 -4.84 -8.18
2 -2.45 -5.81
3 3.14 -0.68
4 11.22 9.06
5 18.87 18.42
6 23.54 23.49
7 25.89 25.59
8 24.80 24.56
9 20.01 20.13
10 12.81 12.74
11 5.78 4.47
12 -1.33 -3.82

Table S2. Monthly standard deviations (SDs) (◦C) for observed and model data by month
during 1976-2005. Standard deviations are calculated using model data downscaled to the
78 GHCND station locations and GHCND station data.

MONTH SD
Obs Mod

1 7.15 8.05
2 6.66 7.56
3 6.63 6.32
4 6.43 6.86
5 5.66 4.72
6 4.69 3.89
7 3.71 3.25
8 3.91 3.47
9 4.80 4.60
10 5.50 5.36
11 5.85 5.82
12 6.38 7.05
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A4. An efficient spatiotemporal

model using Kronecker products
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Introduction

In Chapter 4, a method for temporally-coherent bias correction was presented. An

additional spatio-temporal correction could be added to capture model biases over the

study area and day of year. Here, I present an efficient spatio-temporal model that

could be used for such a problem. The spatiotemporal model increases computational

efficiency via the assumption of a separable space-time covariance function that can be

written as a Kronecker product. I present the model, prove efficient computations for

deriving the posterior conditional mean, and describe parameter estimation. While

the modeling approach presented here is applied to modeling space-time residuals as

part of a bias-correction method, the model could be used in a variety applications.

Here, model data refer to daily model simulations of maximum temperature

(TMAX) generated by a regional climate model (RCM). Observed data refer to cli-

mate station observations from 78 locations. In this model, it is assumed that the

covariance function is separable in space and time and that the temporal covariance

function is periodic over a 365-day period. Prior to modeling, all model and station

data over a 30 year historical period (1976-2005) were averaged over day of year,

yielding 78 × 365 = 2840 total values in both the model and observed time series.

Model construction

Suppose the vector yit represents the difference between model data and observed

data for the ith spatial location i = 1 . . . n and day t t = 1 . . . 365. For any day t , yt

can be modeled as:
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yt =


y1t

...

ynt

 ∼ N




0
...

0

 , Σn×n


Assume Σn×n is known, and Σn×ni,j

= C(si, sj; θ), where C(θ) is the Gaussian co-

variance function with parameter vector θ and s denotes a spatial location. The

parameter vector θ is estimated using maximum likelihood, which will be discussed

later.

Now, consider approximately one month of data (we assume 30 days in one month

here for simplicity). Suppose Zn = (y1 . . . y30), where yi, i = 1 . . . 30 is a vector of

length n, where n is the number of stations.

Zn =


y1

...

y30

∼ N (0n×30, Σt ⊗ Σn×n) (5.22)

where Σt is a correlation matrix of dimension 30.

The ultimate goal is to make predictions at locations over a fine-scale (1km) grid.

Let Zgrid denote locations at which predictions are to be made. The vector Ztotal can

be partitioned as (Zgrid, Zn)T , where Zn is defined as above. The distribution of Ztotal

can then be written as

Zgrid

Zn

 ∼ N


0

0

 ,

 Σt ⊗ Σgrid Σt ⊗ Σ(Xgrid, Xn)

Σt ⊗ Σ(Xn, Xgrid) Σt ⊗ Σn×n


 (5.23)
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The sizes of components of the covariance matrix are

Σ11 Σ12

Σ21 Σ22

 =

30m × 30m 30m × 30n

30n × 30m 30n × 30n.



The conditional distribution Zgrid|Zn = zn is also a Gaussian distribution with

mean vector Σ12Σ−1
22 zn and covariance matrix Σ11 − Σ12Σ−1

22 Σ21:

Zgrid|Zn = zn ∼ N(µ, V )

µ = Σt ⊗ Σ(Xgrid, Xn) × (Σt ⊗ Σn×n)−1zn

V = Σt ⊗ Σgrid − Σt ⊗ Σ(Xgrid, Xn) × (Σt ⊗ Σn×n)−1 × Σt ⊗ Σ(Xn, Xgrid),

where zn is a 30n vector consisting of n station measurements for a period of 30 days.

Alternatively, the distribution of Ztotal may be written as

 Zn

Zgrid

 ∼ N


0

0

 ,

 Σt ⊗ Σn×n Σt ⊗ Σ(Xn, Xgrid)

Σt ⊗ Σ(Xgrid, Xn) Σt ⊗ Σgrid




In this case the sizes of the components of the covariance matrix are

Σ11 Σ12

Σ21 Σ22

 =

 30n × 30n 30n × 30m

30m × 30n 30m × 30m.

 (5.24)

The conditional distribution Zgrid|Zn = zn is a MVN normal distribution with
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mean vector Σ21Σ−1
11 zn and covariance matrix Σ22 − Σ21Σ−1

11 Σ12:

Zgrid|Zn = zn ∼ N(µ, V )

µ = Σt ⊗ Σ(Xgrid, Xn) × (Σt ⊗ Σn×n)−1zn

V = Σt ⊗ Σgrid − Σt ⊗ Σ(Xgrid, Xn) × (Σt ⊗ Σn×n)−1 × Σt ⊗ Σ(Xn, Xgrid),

where zn is a 30n vector consisting of n station measurements for a period of 30 days.

Since Σt ⊗ Σgrid will be a very large matrix, we need to use efficient computational

methods to invert it. For instance for µ we have Σt ⊗ Σ(Xgrid, Xn) × u, where u =

solve(Σt ⊗ Σn×n); here, u is a 30n vector.

In a grid (g1, g2), the distance dij is Haverstine(g1,i, g1,j) + Haverstine(g2,i, g2,j) =

d1,ij + d2,ij. Then the covariance matrix Σ(Xgrid, Xn) = Σ(d1)×Σ(d2) = Σ(d1) ⊗ Σ(d2).

The mean vector µ of the conditional distribution Zgrid|Zn = zn can be computed

efficiently using selected properties of Kronecker products.

If we assume A ∈ Mm and B ∈ Mn are nonsingular, then the following property

holds:

KRON 5.0.1 (Kronecker inverse) (A ⊗ B)−1 = A−1 ⊗ B−1.

The product of two Kronecker products yields another Kronecker product:

KRON 5.0.2 (Product of two Kronecker products)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, ∀A ∈ Mp,q, B ∈ M r,s, C ∈ M q,k, D ∈ M s,l.

The following equality will also be used:
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KRON 5.0.3

Y = CXBT ⇔ vec(Y ) = (B ⊗ C)vec(X),

In KRON 5.0.3, vec(X) performs the operation that stacks the columns of

a matrix from left to right into a vector. The operation reshape(A, m, n) is the

matrix of shape m × n defined by vec(reshape(A, m, n)) = vec(A). Generally,

reshape(y, n/nr, nr) = A× reshape(x, n/nr, nr)×BT. Suppose Σ(Xgrid, Xn) ∈ Mm,n,

Σn×n ∈ Mn, Σt ∈ Mp, and Zn is of length n × p. The posterior mean vector µ can

be computed efficiently as Σ(Xgrid, Xn) × Σ−1
n×n × Z.

Proof

Σt ⊗ Σ(Xgrid, Xn) × (Σt ⊗ Σn×n)−1Zn =

Σt ⊗ Σ(Xgrid, Xn) × (Σ−1
t ⊗ Σ−1

n×n)Zn =

ΣtΣ−1
t ⊗ (Σ(Xgrid, Xn) × Σ−1

n×n)Zn =

Ip ⊗ (Σ(Xgrid, Xn) × Σ−1
n×n)Zn =

(Σ(Xgrid, Xn) × Σ−1
n×n)Z(Ip)T =

Σ(Xgrid, Xn) × Σ−1
n×n × Z□

Evaluation of the Kronecker product Σt ⊗ Σ(Xgrid, Xn) has computational complex-

ity O(nmp2), where m > p > n. Evaluation of the Kronecker product Σt ⊗ Σn×n)

is O(n2p2), where p > n. However, the computation time of the simplified calcula-

tion is the computation of the matrix-matrix product Σ(Xgrid, Xn) × Σ−1
n×n, which is

O(mnp) < O(nmp2)).

Similarly, the conditional covariance matrix V , can be computed as Σt ⊗ (Σgrid −

Σ(Xgrid, Xn)Σ−1
n×nΣ(Xn, Xgrid)):
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Proof

V = Σt ⊗ Σgrid − Σt ⊗ Σ(Xgrid, Xn) × (Σt ⊗ Σn×n)−1 × Σt ⊗ Σ(Xn, Xgrid) =

Σt ⊗ Σgrid − Σt ⊗ Σ(Xgrid, Xn) × Σ−1
t ⊗ Σ−1

n×n × Σt ⊗ Σ(Xn, Xgrid) =

Σt ⊗ Σgrid − ΣtΣ−1
t ⊗ Σ(Xgrid, Xn)Σ−1

n×nΣ(Xn, Xgrid) =

Σt ⊗ Σgrid − IpΣt ⊗ Σ(Xgrid, Xn)Σ−1
n×nΣ(Xn, Xgrid) =

Σt ⊗ (Σgrid − Σ(Xgrid, Xn)Σ−1
n×nΣ(Xn, Xgrid))□

Unfortunately, there is no way to eliminate the Kronecker product in this compu-

tation. Instead, approximation or simulation of the posterior covariance matrix V

using [215] would be a better option. This will be discussed later. The conditional

posterior covariance matrix V is of less importance than the posterior mean µ for this

application.

Efficient spatiotemporal models: adding

the nugget and marginal variance

We now consider the (more realistic) case in which the marginal variance and nugget

effect are incorporated into the model. We begin as before, considering

yt =


y1t

...

ynt

 ∼ N




0
...

0

 , σ2Σn×n + τ 2I
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Again, Σn×n is assumed known, and Σn×ni,j
= C(si, sj; θ), where C(θ) is the Gaussian

covariance function with parameter vector θ. σ2 is the marginal variance (partial sill),

and τ 2 is the nugget effect. The parameter vector θ will be estimated using maximum

likelihood, as discussed later.

Suppose Zn = (y1 . . . y30), where yi, i = 1 . . . 30, is a vector of length n, where n is

the number of stations.

Zn =


y1

...

y30

∼ N
(
0n×30, σ2(Σt ⊗ Σn×n) + τ 2I

)
(5.25)

Σt is a correlation matrix of dimension 365.

The ultimate goal is to make predictions at locations over a fine-scale (1km) grid.

Let Zgrid denote locations at which predictions are to be made. The vector Ztotal can

be partitioned as (Zn, Zgrid)T , where Zn is defined as above. The distribution of Ztotal

can be written as

 Zn

Zgrid

 ∼ N


µ1 = 0

µ2 = 0

 ,

σ2(Σt ⊗ Σn×n) + τ 2I σ2Σt ⊗ Σ(Xn, Xgrid)

σ2Σt ⊗ Σ(Xgrid, Xn) σ2Σt ⊗ Σgrid




In this case the sizes of the components of the covariance matrix are

Σ11 Σ12

Σ21 Σ22

 =

 30n × 30n 30n × 30m

30m × 30n 30m × 30m.

 (5.26)

The conditional distribution Zgrid|Zn = zn is a MVN normal distribution with
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mean vector µ1 + Σ21Σ−1
11 (zn − µ2) and covariance matrix Σ22 − Σ21Σ−1

11 Σ12. Since

we are assuming µ1 = µ2 = 0 we will omit µ1 and µ2 for simplicity:

Zgrid|Zn = zn ∼ N(µ, V )

µ = σ2Σt ⊗ Σ(Xgrid, Xn) × (σ2(Σt ⊗ Σn×n) + τ 2I)−1zn

V = σ2Σt ⊗Σgrid −σ2Σt ⊗Σ(Xgrid, Xn)× (σ2(Σt ⊗Σn×n)+τ2I)−1 ×σ2Σt ⊗Σ(Xn, Xgrid),

where zn is a 30n vector consisting of n station measurements for a period of 30 days. How-

ever, calculating the conditional mean and covariance matrix is computationally infeasible

for large n.

We will simplify the calculations by using the eigendecomposition of Σt and Σn×n. To

reduce confusion, we will define C = Σt, R = Σn×n, and G = Σ(Xgrid, Xn). Now let the

eigendecomposition of C and R be UcScUT
c and UrSrUT

r , respectively. First, we will work

through the simplification of (σ2(Σt ⊗ Σn×n) + τ2I)−1zn = (σ2(C ⊗ R) + τ2I)−1zn. After

substituting, the expression for the posterior conditional mean vector µ is:

σ2(C ⊗ G) × (σ2C ⊗ R + τ2I)−1zn. (5.27)

Simplifying the right hand side of (5.27) (σ2C ⊗ R + τ2I)−1zn gives us :
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(σ2C ⊗ R + τ2I)−1zn =

(σ2UcScUT
c ⊗ UrSrUT

r + τ2I)−1zn =

(σ2UcSc ⊗ UrSr × UT
c ⊗ UT

r + τ2I)−1zn =

((Uc ⊗ Ur) × (σ2Sc ⊗ Sr + τ2I)(UT
c ⊗ UT

r ))−1zn =

(UT
c ⊗ UT

r )−1 × (σ2Sc ⊗ Sr + τ2I)−1 × (Uc ⊗ Ur)−1zn

Let X = (σ2Sc ⊗ Sr + τ2I)−1. Since Sc and Sr are diagonal matrices of eigenvalues, the

inverse is computationally cheap to calculate. It is easy to see that the eigenvalues of

(σ2C ⊗ R) + τ2I are the diagonal elements of (σ2Sc ⊗ Sr + τ2I) (Theorems 5.2.1 and 5.2.2).

Thus, we have

(UT
c ⊗ UT

r )−1 × X × vec(Ur
−1ZnU−T

c ). (5.28)

In (5.28), Zn is a matrix of appropriate dimension, constructed from stacking zn into

columns from left to right.

Now, substituting (5.28) for (C ⊗ R + τ2I)−1zn in (5.27) we obtain:

σ2(CU−T
c ⊗ GU−T

r ) × X × vec(Ur
−1ZnU−T

c ).

Now, let vec(D) = X×vec(Ur
−1ZnU−T

c ). The expression can then be further simplified:
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σ2(CU−T
c ⊗ GU−T

r ) × vec(D) =

σ2GU−T
r D(CU−T

c )T =

σ2GU−T
r DU−1

c CT.

It is reasonable to assume the addition of a temporal nugget, α2, to the temporal

covariance matrix to account for small scale variation over time. In this case, Σ′
t = Σt + α2.

In the following calculation, Σ′
t will denote the temporal covariance matrix including the

nugget, and Σt will denote the temporal covariance matrix without the nugget.

 Zn

Zgrid

 ∼ N


0

0

 ,

σ2(Σ′
t ⊗ Σn×n) + τ2I σ2Σt ⊗ Σ(Xn, Xgrid)

σ2Σt ⊗ Σ(Xgrid, Xn) σ2Σt ⊗ Σgrid




.

The calculation of the conditional mean vector is nearly identical to the steps in equa-

tions 5.6 and 5.7, except that Σ′
t will be denoted by C′. The eigendecomposition of C′ will

by denoted by U′
cS′

cUT′
c . After substituting (5.28) for (C′ ⊗ R + τ2I)−1zn, we obtain:

σ2(CU−T′
c ⊗ GU−T

r ) × X × vec(Ur
−1ZnU−T′

c ).

Further simplification yields:

σ2(CU−T′
c ⊗ GU−T

r ) × vec(D) =

σ2GU−T
r D(C′U−T′

c )T =

σ2GU−T
r DU−1′

c CT.
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Because the Σgrid is too large to be stored in memory, realizations of the conditional

distribution could be approximated using a method described by [215]. However, in this

context only the conditional mean is of interest.

Theorem 5.0.1 Suppose λ is an eigenvalue of an n×n matrix A. Then αλ is an eigenvalue

of αA.

Proof Let x ̸= 0 be an eigenvector of A for λ. Then

(αA)x = α(Ax)

= α(λx)

= (αλ)x □

Theorem 5.0.2 Suppose λi, i = 1...n are eigenvalues of an n × n matrix A. Let c be a

scalar, and let I be the n × n identity matrix. Then λi + c are the eigenvalues of A + cI.

Proof Let x ̸= 0 be an eigenvector of A for λ. Then

Ax = λx; cIx = cIx

Ax + cIx = λx + cIx

(A + cI)x = (λ + cI)x □

Estimating model parameters

Because it is of interest to obtain smooth estimates of the posterior mean over both space

and time, a smooth covariance function must be selected. I chose the infinitely-differentiable
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Gaussian covariance function (5.29) to construct the spatial correlation matrix and a peri-

odic covariance function for the temporal correlation matrix (5.30). The Gaussian covari-

ance function is infinitely differentiable and leads to smooth realizations.

C(d, ϕ) = exp(−(d/ϕ)2) (5.29)

C(d, ℓ, ρ) = exp(−2ℓ2sin2(πd/ρ)) (5.30)

d = d(i, j) represents the distance between locations i and j in (5.29)and between days

i and j in (5.30). Distances are calculated in km and in days for spatial and temporal

correlation matrices, respectively. In 5.29, ϕ is the spatial scale parameter governing the

strength of spatial correlation. In (5.30) ℓ controls the strength of temporal correlation,

and ρ is the period, which is set to 365, as there are 365 days in a year.

Maximum likelihood (ML) is used to estimate ϕ, ℓ, the marginal variance σ2, the overall

nugget τ2, and the temporal nugget, α2. When no nugget effects are assumed, only a

marginal variance, the distribution of Y is

Y ∼ MV N(0p×n, σ2Σt ⊗ Σn×n) (5.31)

where σ2 is the marginal variance of Y . In this study, Y is typically a daily, mean-0 time

series that has a marginal standard deviation of 1. Now, let Σ = Σt ⊗ Σn×n, N = p × n, µ

be a 0 vector of length N and Y be a vector of observed, mean-0 data of length N . Then

the log likelihood function for (5.31) can be written as

log(ℓ(Y)) = −N/2(2π) − log(|σ2Σ|1/2) − 1
2ΣN

n=1(Y − µ)T (σ2Σ)−1(Y − µ) =

−N

2 (2π) − log(|σ2Σ|1/2) − 1
2ΣN

n=1YT (σ2Σ)−1Y. (5.32)
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ML estimation of the scale parameters for Σt and Σn×n, ϕt and ϕn×n, respectively, was

done by minimizing log(ℓ(Y )) (5.32) using the Nelder Mead algorithm implemented in the

dfoptim package [216] in R.

Observe that |Σ| can be expressed as |Σt|n|Σn×n|p, where here p = 365. Let Lt and

Ls be the Cholesky factors of Σt and Σn×n, respectively. We can then write log(|Σ|) =

log(|Lt|n|Ls|p) = n ×
∑p

i=1 Lsii + p ×
∑n

j=1 Lsjj . This is a more stable and efficient compu-

tation than calculating log|Σ|.

In the case when both the overall nugget, τ2 and the temporal nugget α2 are incorporated

in the model, the distribution of Y can be expressed as a matrix-variate normal distribution:

Y ∼ MN n×p(vec(Y)|0n×p, σ2Σ′
t ⊗ Σn×n + τ2In×p). (5.33)

In 5.33, Σ′
t denotes the temporal covariance matrix with the temporal nugget added

(Σ′
t = Σt + α2I). Let C = Σ′

t, R = Σn×n, G = Σ(Xgrid, Xn) and the eigendecomposition

of C and R be UcScUT
c and UrSrUT

r , respectively. The log likelihood for (5.33) is written

as [217]:

log(ℓ(Y )) = −1
2 ln(2π)−1

2 ln|(σ2Sc⊗Sr+τ2I)|−1
2vec(UT

r YUc)T (σ2Sc⊗Sr+τ2I)−1vec(UT
r YUc)

(5.34)

In (5.34), ln|(σ2Sc ⊗ Sr + τ2I)| is computationally cheap to evaluate because (σ2Sc ⊗

Sr + τ2I) is a diagonal matrix. The log determinant is the sum of the diagonal elements.

All parameters (σ2, τ2, α2, ϕ, and ρ) were estimated using the data, and estimates were

used as initial values during optimization.

The variance of Y was obtained by computing the daily variance and then averaging

over all days. This estimated variance is the total variance of all the variance components (

σ2, τ2, and α2); the sum of all variance components should not exceed the estimated total

variance. To implement constraints on variance components, an additional penalty term
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was added to the likelihood function, −0.5λ(ν2 − σ2 − τ2 − α2), where λ > 0 controls the

strength of the penalty, and ν is the estimated sum of all variance components (for this data,

the estimated sum of all variance components was 0.2852). As λ increases, the penalty for

exceeding the overall variance increases. In practice, consistent estimation of all parameters

is difficult, as shown in [218]. Estimation can be improved by specifying either the spatial

or temporal range parameter (ϕ or ρ), but with noisy data, estimates may warrant further

scrutiny.

Conclusion
The Gaussian spatio-temporal model described here can be efficiently implemented by using

various properties of the Kronecker product in combination with known matrix properties.

While the model is used for an application of bias-correction, the model is highly gener-

alizable and could be used in other applications that require modeling of spatiotemporal

data. The main limitation of this model is in the estimation of parameters, as it is difficult

to obtain consistent estimation of both the marginal variance and range parameters, espe-

cially with noisy data. More research is needed to refine the estimation of parameters in

spatiotemporal models with noisy data.

Appendix

Simulating multivariate normal random variables

Suppose we wish to simulate random variables from a multivariate distribution X ∼ MV N(µ, Σ).

Define a collection of n univariate normal random vectors, Zi ∼ N(0, 1), i = 1, . . . , n.
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Any semi-positive definite matrix can be decomposed via the Cholesky decomposition as

Σ = LLT, where L is lower triangular. Then

X = µ + LZ (5.35)

has mean vector µ and covariance matrix LLT = Σ. Cholesky decomposition can only be

applied to Hermitian positive definite matrices, but if pivoting is utilized, Cholesky fac-

torization can be applied to positive semidefinite matrices [219]. Because the covariance

matrices used in this application are in general positive semi-definite, symmetric pivoting

of the form A → PAPT, where P is a permutation matrix, will be used. The permuta-

tion matrix P reorders the diagonal elements of A. This results in near-zero entries are

not encountered until the algorithm has completed the rth iteration of the main loop in

Cholesky decomposition (r is the perceived rank of the matrix). Choleskty decomposition

with complete pivoting is regarded as a stable algorithm [219].

In general, any symmetric positive semi definite matrix A has a factorization

PTAP = RTR,

R =

R11 R12

0 0

 ,

where P is a permutation matrix, R11 is an upper triangular matrix of dimension r × r

with positive elements on the diagonal, and rank(A) = r. This factorization is accomplished

via complete pivoting, in which at each stage, the largest diagonal element in the active

submatrix is set to the pivot position.

An alternative method for finding LLT is using singular value decomposition (SVD). In

contrast to the Cholesky decomposition, any square or rectangular, real-valued matrix A
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with dimension m×n can be factorized as UDVT, where U is an m×m orthogonal matrix

of left singular values, D is an m × n matrix with non-negative real numbers (eigenvalues)

on the diagonal, and V is an n×n orthogonal matrix of right singular values. For symmetric

matrices of size m × m, U = VT, so the factorization may be written as UDUT. In this

case D is a square matrix of size m × m with eigenvalues along the diagonal. The columns

of U are the eigenvectors corresponding to the eigenvalues in D. Since covariances matrices

are always symmetric, this is the factorization we will use. SVD can be used to find L∗L∗T:

UDUT = UD1/2D1/2UT = L∗L∗T

although in general L∗L∗T ̸= LLT. MVN realizations can be constructed similarly as

in (5.35), except that L is replaced by L∗ = UD1/2.

The covariance matrix for separable Gaussian covariance functions will be of the form

Σ = aA⊗B+cI, for scalar values a and c > 0; for large n, simulating realizations will become

computationally infeasible. However, computation time can be expedited by utilizing the

matrix-normal, rather than multivariate normal, distribution. First, we will consider the

case when a = 1 and c = 0 (i.e. the marginal variance is 1 and there is no nugget effect).

The matrix-normal distribution is related to the multivariate normal distribution as follows:

X ∼ MN n×p(M, U, V),

if and only if

vec(X) ∼ MVN np(vec(M), V ⊗ U). (5.36)

The probability distribution function (PDF) of the matrix-normal distribution is given
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by:

P (X|M, U, V) = exp(tr([V−1(X − M)TU−1(X − M)])
(2π)np/2|V|n/2|U|p/2

M = n × p

U = n × n

V = p × p.

Proof :

−1
2 tr[V−1(X − M)TU−1(X − M)] =

−1
2 vec(X − M)Tvec(U−1(X − M)V−1) =

−1
2 vec(X − M)(V−1 ⊗ U−1)vec(X − M) (5.37)

,

where (5.37) is the argument of the exponent of the multivariate normal PDF. The proof

is complete by noting that |V ⊗ U| = |V|n|U|p□.

Suppose Y has a matrix normal distribution with mean matrix Z = 0n×p and covariance

matrices U and V. Then for a mean matrix M and linear transformations L and R, Y can

be expressed as:

Y = M + LZR, (5.38)

where Y has a matrix-normal distribution with parameters M, LLT, RTR. In (5.38),

Cholesky decomposition is used to construct the matrices L and R, the Cholesky factors of

U and V, respectively. If SVD is used, then LLT = UuD1/2
u D1/2

u UT
u is the SVD of U and

RTR = UvD1/2
v D1/2

v UT
v is the SVD of V. This, in turn implies that (5.38) can be used

to generate MVN variates with L = UuD1/2
u and R = D1/2

v UT
v
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Suppose we wish to sample from (5.22), for t timesteps and m spatial locations. We

begin by expressing (5.22) as a matrix-normal distribution with a mean matrix M of size

m × t consisting entirely of 0s. The matrix of N(0,1) random variates Z will also be of size

m × t. We set U =: Σn×n , and V =: Σt and use either Cholesky decomposition or SVD

to obtain L and R. The decompositions of U and V represent the computationally most

expensive steps in the linear transformation (5.38). Cholesky decomposition, which requires

n3/4 flops, is slightly faster than SVD. However, the time savings using either Cholesky or

SVD over (5.35) are substantial, because the Kronecker product (O(n6)) does not have to

be computed.

If the marginal variance a and nugget c (a > 0, c > 0) are added, the linear transforma-

tion in (5.38) can still be used, but will be modified as

Y = M + aLZR + cI. (5.39)

In (5.39), cI is easily simulated, as it represents a N(0, c) process.

Eigendecomposition of symmetric matrices

Eigendecomposition is crucial for obtaining computationally efficient solutions in large-n

problems, such as the one discussed in this chapter. Recall that a nonzero vector x is an

eigenvector of an n × n matrix A with eigenvalue λ if Ax = λx. The matrix A − λI is

singular and x is a nonzero vector in the nullspace of (A − λI). The eigenvalues of A are

the roots of the characteristic polynomial p(λ) = det(A − λI) = 0. Every square matrix

has at least one unique eigenvalue, and when counted with multiplicity, an n × n matrix

has n eigenvalues (which may or may not be unique).

For symmetric matrices eigenvectors corresponding to eigenvalues are orthogonal, and

all the eigenvalues are real. Every real symmetric matrix can be decomposed as A = QΛQT,
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where Λ = diag(λ1, ...λn) is diagonal with real diagonal elements. The diagonal elements of

λ are the eigenvalues of A in decreasing order. Also, Q−1 = QT because Q is an orthogonal

matrix. If the matrix is symmetric and positive definite, then all the eigenvalues are positive.

Gaussian process regression

A process convolution is an efficient way to implement Gaussian (GP) regression. A GP is

a collection of finite realizations that follow a multivariate normal (MVN) distribution. The

realizations can be completely characterized by their mean vector µ and covariance matrix

Σ. The covariance function C(·) must result in a valid covariance matrix; that is Σn(x, x′)

must be positive semi definite:

aΣnaT ≥ 0, ∀a.

In GP regression, a prior is placed on the function f(x) that generates y1 . . . yn given

input x1 . . . xn. Thus f(x) ∼ GP. The data, Zn(Xn, Yn) have a MVN likelihood. In GP

regression, we wish to determine which function could have resulted in the data Zn; this

is the conditional distribution f(x)|Zn and it is also the posterior distribution. Recall that
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the conditional distribution of a MVN distribution is also MVN normal:

X =

X1

X2

 ,

 q × 1

(N − q) × 1



µ =

µ1

µ2

 ,

 q × 1

(N − q) × 1



Σ =

Σ11 Σ12

Σ21 Σ22

 ,

 q × q q × (N − q)

(N − q) × q (N − q) × (N − q)


µ̃ = µ1 + Σ12Σ−1

22 (x2 − µ2)

Σ̃ = Σ11 − Σ12Σ−1
22 Σ21

Now, suppose we want to make predictions at a vector of new locations. It is obvi-

ous that the observations Yn and f(X ) are multivariate normal. Suppose that f(x)|Zn ∼

MV N(µ(X ), Σ(X )) and that X has m rows. We can apply the previous result for condi-

tioning on a MVN distribution to obtain the posterior predictive distribution. Here, Xn are

training data, X are new test data locations, and Yn are observations:

µ(X ) = Σ(X , Xn)Σ−1
n Yn

Σ(X ) = Σ(X , X ) − Σ(X , Xn)Σ−1
n Σ(X , Xn)T

Clearly, this approach is not feasbile for large n, as it requires the inversion of an n × n

matrix. If n is large, the covariance matrix can be approximated using singular value

decomposition (SVD). SVD can be used to extract the most important information from

a matrix and thus reduce its rank from m to k, where k < m. When SVD is applied to a

covariance matrix, Σ, we obtain the following:
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Σ = UDV T = UDUT = UD1/2D1/2UT = KKT .

where D is a diagonal matrix of singular values. Since Σ is symmetric, U = V . Also, U is

an m × m orthogonal matrix and Σ is an m × n matrix, but here n × n diagonal matrix

(Σij = 0 for i ̸= j) with entries σi ≥ 0, σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, andk = min(m, n). V is an

n × n orthogonal matrix.

Now, say Z = Kx, where x ∼ N(0, I). Realizations from Z can now be generated and

the K matrix can be expressed as:

K =
[
u1d

1/2
1 | u2d

1/2
2 | . . . | uℓd

1/2
ℓ

]
,

where ℓ < m.

Approximation of covariance matrices

Often, computing realizations from a MVN distribution is limited by the size of the covari-

ance matrix. For large covariance matrices, direct simulation of MVN realizations may not

be feasible. However, with approximation techniques such as that proposed by [215], the

simulation of MVN realizations is possible. Here, I prove the proposed method by [215].

I will begin with a review of the conditional Gaussian distribution. Suppose Z2(s) ∼

MV N(0, Σ), and Z1(s) = Z2 + ϵ, where ϵ ∼ MV N(0, σ2). Thus, Z1 is a “noisy” ver-

sion of Z2. Now, suppose we observe noisy observations at locations s2 and s5 (Z1 =

(Z1(s2), Z1(s5))T ), and we wish conduct conditional inference around locations s1 . . . s10

(Z2 = (Z2(s1) . . . Z2(s10))T ). Given that Z1 and Z2 are Gaussian-distributed, the vector

Z = [Z1 Z2]T is also Gaussian-distributed with a mean of µ and a covariance matrix Ω:

323



Z =

Z1

Z2

 ,

 q × 1

(N − q) × 1



µ =

µ1 = 0

µ2 = 0

 ,

 q × 1

(N − q) × 1



Ω =

Σ11 + σ2I Σ12

Σ21 Σ22

 ,

 q × q q × (N − q)

(N − q) × q (N − q) × (N − q)



To conduct inference about s1 . . . s10 given noisy observations s2, s5 we obtain the con-

ditional distribution Z2|Z1 = z1, which is also Gaussian-distributed with a mean of µ̂ and

a covariance matrix Ω̂:

µ̂ = µ1 + Σ21(Σ11 + σ2)−1z1

Ω̂ = Σ22 − Σ21Σ−1
11 Σ12

Figure 5.22 shows noisy observations at locations s2 and s5, along with realizations

taken from the conditional distribution Z2|Z1 = z1. Note that the values in the conditional

mean vector at locations s2 and s5 are exactly the same as the observed values at those

locations. However, there is some uncertainty around locations s2 and s5.
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Figure 5.22: Noisy observations s2 amd s5 (blue), conditional mean (purple), conditional
realizations (gray).

Implementation [215] outlines an approach for the efficient approximation of covari-

ance matrices. I will prove the correctness of the approach below and implement the associ-

ated algorithm. The goal is to develop a Monte Carlo approach to approximate the posterior

conditional covariance matrix. Specifically, using the nomenclature in [215], the goal is to

approximate the conditional covariance matrix of z|y. We are given that z|y ∼ MV N(ẑ, V ),

where ẑ = ΣKT (KΣK +σ2I)−1y and V = Σ−ΣKT (KΣKT +σ2I)−1)KΣ. [215]’s approach

involves taking a sample u ∼ MV N(0, Σ). Next, a psuedo y is constructed as y∗ = Ku + ϵ,

where ϵ ∼ MV N(0, σ2I). Then u∗ is constructed: u∗ = u − ΣKT (KΣK + σ2I)−1y∗. A

sample from the appropriate conditional distribution can then be obtained as z̃ = ẑ + u∗.

It is easy to see that y∗ ∼ MV N(0, KΣKT + σ2I). To find the distribution of u∗, we must

first find the distribution of ΣKT (KΣK + σ2I)−1y∗.

Because y∗ is Gaussian-distributed, we can use the linear transformation properties of
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random variables to determine the distribution of ΣKT (KΣK + σ2I)−1y∗.

ΣKT (KΣK + σ2I)−1y∗ ∼ MV N(0, Ω)

Ω = ΣKT (KΣK + σ2I)−1(KΣKT + σ2I)
[
ΣKT (KΣKT + σ2I)−1

]T
=

ΣKT I
[
ΣKT (KΣKT + σ2I)−1

]T
=

ΣKT (KΣKT + σ2I)−1KΣ. (5.40)

Thus, ΣKT (KΣKT + σ2I)−1y∗ ∼ MV N(0, ΣKT (KΣKT + σ2I)−1KΣ).

Also, observe that the vector [u, y∗]T has the following distribution:

 u

y∗

 ∼ MV N

0

0

 ,

 Σ KΣ

ΣKT KΣKT + σ2I



The vector [u, Dy∗], where D = ΣKT (KΣKT + σ2I)−1, has the following distribution:

 u

Dy∗

 ∼ MV N

0

0

 ,

 Σ ΣKT (KΣKT + σ2I)−1KΣ

ΣKT (KΣKT + σ2I)−1KΣ ΣKT (KΣKT + σ2I)−1KΣ

 ,

where Cov(u, Dy∗) and Cov(Dy∗, u) can be derived using the fact that for constant

matrices A and B and random vectors X and Y , Cov(AX, BY ) = ACov(X, Y )BT . Note

that here, D is a constant matrix. We have

326



Cov(u, Dy∗) =

ICov(u, y∗)DT =

ΣKT (KΣKT + σ2I)−1KΣ

and

Cov(Dy∗, u) =

DCov(y∗, u)IT =

ΣKT (KΣKT + σ2I)−1KΣ

.

Thus, Cov(u, Dy∗) = Cov(Dy∗, u) = V ar(Dy∗, Dy∗).

Now, we have that

u − Dy∗ =

I 0

0 −I

 [
u Dy∗

]
.

Thus, by linear transformation of a MVN random variable, we have that

u − Dy
∗ ∼ MV N

[
0

0

]
,

[
I 0

0 −I

][
Σ ΣKT (KΣKT + σ2I)−1KΣ

ΣKT (KΣKT + σ2I)−1KΣ ΣKT (KΣKT + σ2I)−1KΣ

][
I 0

0 −I

]T

.

After expanding the matrix multiplication, we have

u − Dy∗ ∼ MV N

0

0

 ,

 Σ −ΣKT (KΣKT + σ2I)−1KΣ

−ΣKT (KΣKT + σ2I)−1KΣKT ΣKT (KΣKT + σ2I)−1KΣ


Now, we must determine the structure of the covariance matrix of [u − Dy∗]. The
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variance of the sum of two random variables X and Y is

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y )

V ar(X + Y ) = E((X + Y ) − E(X + Y ))2 =

E((X + Y ) − (E(X) − E(Y )))2 =

E((X − E(X)) + (Y − E(Y )))2 =

E
[
(X − E(X))2 + (Y − E(Y ))2 + 2((X − E(X))(Y − E(Y )))

]
=

V ar(X) + V ar(Y ) + 2Cov(X, Y ).

Thus, the variance-covariance matrix of u∗ = [u − Dy∗] =

V ar(u) + V ar(Dy∗) + 2Cov(u, Dy∗) =

Σ + ΣKT (KΣKT + σ2I)−1KΣ − 2(ΣKT (KΣKT + σ2I)−1KΣ =

Σ − ΣKT (KΣKT + σ2I)−1KΣ

Thus, u∗ ∼ MV N(0, Σ−ΣKT (KΣKT +σ2I)−1KΣ). Next, we must show that z̃ = ẑ+u∗

is a sample from z|y. Since ẑ is a constant mean vector, z̃ is a simple linear transformation

of u∗, and

z̃ ∼ MV N(ΣKT (KΣK + σ2I)−1y, Σ − ΣKT (KΣKT + σ2I)−1KΣ),

which is the desired result. Figure 5.23 plot shows the same data as in Figure 5.22 except

that realizations are generated using the approximation method proposed by [215]. The ap-

proximated realizations in Figure 5.23 are nearly indistinguishable from actual realizations

shown in Figure 5.22.
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Figure 5.23: Simulation of realizations using the covariance matrix approximation method
proposed by [215]
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