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Abstract

We investigate phase transitions associated with three control methods for epidemics on

small world networks. Motivated by the behavior of SARS-CoV-2, we construct a theoretical

SIR model of a virus that exhibits presymptomatic, asymptomatic, and symptomatic stages

in two possible pathways. Using agent-based simulations on small world networks, we

observe phase transitions for epidemic spread related to: 1) Global social distancing with a

fixed probability of adherence. 2) Individually initiated social isolation when a threshold num-

ber of contacts are infected. 3) Viral shedding rate. The primary driver of total number of

infections is the viral shedding rate, with probability of social distancing being the next critical

factor. Individually initiated social isolation was effective when initiated in response to a sin-

gle infected contact. For each of these control measures, the total number of infections

exhibits a sharp phase transition as the strength of the measure is varied.

Introduction

The SARS-CoV-2 virus that has spread throughout the globe has created societal disruption

and had a massive impact on global health [1]. With no known treatment, public policy and

human behavior are currently the only tools that are available to mitigate the spread [2]. A fun-

damental characteristic of SARS-CoV-2 is that after an individual is exposed, that individual

passes through an extended presymptomatic stage followed by either an asymptomatic or

symptomatic stage [3]. Our goal in this work is to construct a theoretical network disease

model with these qualities and investigate phase transitions associated with three types of con-

trol measures. While many models related to SARS-CoV-2 are designed to be forecasting

tools, our study is intended as a contribution to the theoretical literature regarding qualitative

aspects of control measures for viruses with these pathways of disease progression.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0238412 September 10, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Braun B, Taraktaş B, Beckage B, Molofsky

J (2020) Simulating phase transitions and control

measures for network epidemics caused by

infections with presymptomatic, asymptomatic,

and symptomatic stages. PLoS ONE 15(9):

e0238412. https://doi.org/10.1371/journal.

pone.0238412

Editor: Alessandro Rizzo, Politecnico di Torino,

ITALY

Received: May 19, 2020

Accepted: August 6, 2020

Published: September 10, 2020

Copyright: © 2020 Braun et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All NetLogo code and

experimental data files are available from the github

repository https://github.com/braunmath/social-

distance-effects-covid19.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-6636-8156
http://orcid.org/0000-0001-5479-4801
https://doi.org/10.1371/journal.pone.0238412
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238412&domain=pdf&date_stamp=2020-09-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238412&domain=pdf&date_stamp=2020-09-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238412&domain=pdf&date_stamp=2020-09-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238412&domain=pdf&date_stamp=2020-09-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238412&domain=pdf&date_stamp=2020-09-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238412&domain=pdf&date_stamp=2020-09-10
https://doi.org/10.1371/journal.pone.0238412
https://doi.org/10.1371/journal.pone.0238412
http://creativecommons.org/licenses/by/4.0/
https://github.com/braunmath/social-distance-effects-covid19
https://github.com/braunmath/social-distance-effects-covid19


In the specific case of SARS-CoV-2, one control measure that has been used is government-

mandated social distancing. Different countries, and different states within the US, have

implemented different approaches to this [2, 3]. While most government plans include some

social distancing, questions have arisen as to the efficacy of social distancing, how long social

distancing should last and to what extent it is needed [4]. A second control method involves

individually-determined changes to social behavior, which work in concert with mandated

social distancing to mitigate viral transmission [5, 6]. Individuals who live with an infected

individual are being asked or required to quarantine for 14 days prior to interacting in the

larger society [7]. One question is whether these individual responses of behavioral modifica-

tion are sufficient to moderate epidemic spread and whether there are additive or non-additive

effects when implemented with top-down government policy on social distancing [5]. A third

type of control measure involves use of personal protective equipment to reduce the rate of

viral transmission. For example, mask usage has been found to be effective in this regard for

SARS-CoV-2 [8–10].

These real-world aspects of SARS-CoV-2 highlight the need for a more thorough under-

standing of the general behavior of viruses exhibiting multiple progressions of disease develop-

ment. With this as motivation, we develop a theoretical model in which we investigate how

three types of control measures are associated with sharp phase transitions for the total num-

ber of infected individuals. While modeling contacts can be done in mean-field, statistical, and

metapopulation SIR models [1, 11–14], we use an agent-based model (ABM) on Watts-Stro-

gatz small world networks [15–17]. Small world networks have connectedness properties that

are found in real-world social networks and have been previously considered in epidemiologi-

cal contexts [18, 19].

The first control measure in our ABM is social distancing imposed on the network at a

global scale. Our model encodes this global social distancing as complete isolation of an agent

from other agents. The likelihood of social distancing is applied uniformly to all agents. The

second control measure arises when agents have social connections that are infected and

symptomatic [2, 8]. In this case, agents temporarily isolate from their contacts in the network

if they are in contact with a sufficient number of symptomatic agents. The third type of control

measure is to alter the rate of viral spread, which reflects behavior such as use of personal pro-

tective equipment, e.g., masks [8, 10]. We examine how each of these measures alone and in

concert with each other influence the viral outbreak.

For each of these control measures, we ask the following questions:

1. How does varying the strength of the control measure impact the total number of infections

in an epidemic?

2. If a control measure impacts the total number of infections, is there a phase transition asso-

ciated with changes in strength of that control measure?

3. How do these three control measures interact regarding their impact on total number of

infections?

Model and parameters

Agent-based model

We develop an SIR, network-based, agent-based model where agents pass through various

infection states (Fig 1). Agents pass through a presymptomatic infection state followed by

either an asymptomatic infected stage or a symptomatic infected stage. In our model, each

agent carries an individual pathogen level that changes in response to contact with infected

PLOS ONE Phase transitions and control measures for network epidemics

PLOS ONE | https://doi.org/10.1371/journal.pone.0238412 September 10, 2020 2 / 14

https://doi.org/10.1371/journal.pone.0238412


agents. Initially, this level is set to 0 pathogen units for susceptible agents. At each time step

(conceived as a day), if a susceptible agent has no infected contacts then their pathogen level

does not change. For each day that a susceptible agent has one or more infected neighbors,

their pathogen level increases by a fixed fraction of the pathogen levels of their infected neigh-

bors. There is a global infection threshold that applies to all agents, which we fix at 25 pathogen

units; in other words, the day after the pathogen level for an individual agent exceeds 25 units,

that agent enters the presymptomatic infected state. Once an agent enters the infected state,

their pathogen level stays constant until they have reached the resistant/removed state, at

which point it is reset to 0 units. Model runs are initiated with a small number of infected

agents, whose pathogen levels are initially set at 35 pathogen units, and the remainder of the

agents are initially deemed susceptible.

These initial and threshold values for the pathogen levels in our model are not based on

real-world data, but rather were selected for simplicity to investigate general behavior of phase

transitions under a mechanism of viral shedding with individualized pathogen levels. Because

our model does not use a transmission probability for each contact, but rather a viral shedding

rate where each individual agent has varying levels of pathogen load, this model is well-suited

to ABM simulations and less amenable to ODE-based deterministic analysis.

Once the individual pathogen level for an agent exceeds 25 units, that agent enters a pre-

symptomatic infection stage, followed by either a symptomatic or asymptomatic stage (Fig 1).

The length of the presymptomatic stage is the same for all agents, and can be set to last one or

more days. The lengths of the two possible main infection stages are set independently from

each other, but are the same for all agents. Following the main infection stage, the agent is

either resistant or removed.

Fig 1. Agent infection states. Flow chart of infection pathways in the agent based model.

https://doi.org/10.1371/journal.pone.0238412.g001
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In addition to the infection stages, each agent is in one of two daily behavior states: socially

distanced or not socially distanced. The behavior state is reset each day. If an agent is not

socially distanced on a given day, then that agent can interact with any neighboring agent. If

an agent is socially distanced, the agent does not interact with any neighboring agents; in our

theoretical model, social distancing is equivalent to self-quarantine. Agents socially distance in

a given day for one of two reasons. A global social distance probability is set, which determines

the chance that an agent will socially distance on a given day. A local social distance threshold

is set, and this value dictates individual responses to infected symptomatic neighbors. If the

number of infected symptomatic neighbors of an agent equals or exceeds this threshold, the

agent will social distance independently of the global parameter. This local threshold is the

same for all agents.

Model parameters and simulations

We implement our agent-based model on Watts-Strogatz (WS) networks. The WS networks

can simultaneously demonstrate both high clustering and short average path length, and thus

serve as effective approximations of social networks that are neither completely random nor

regular [15]. High clustering and short average path length allow for local interactions and

more distant interactions to be incorporated [16, 17, 20], which are properties often found in

real-world networks. The WS small world network in our model is characterized by three

parameters: number of nodes N, average node degree K and rewiring probability. The rewiring

parameter is used to determine the likelihood of rewiring each edge starting from a regular

ring lattice. A rewiring parameter of 0 preserves the original ring lattice; a rewiring parameter

of 1 simulates a random network. We fix the number of nodes N = 500 and the average degree

K = 20, which allows ln(N)� K� N. We then vary the rewiring probability among the values

{0.05, 0.10, 0.25, 0.50}. For each of our four rewiring probabilities we construct 10 networks on

which to run simulations.

We define our three model parameters as follows:

1. Social distance probability: the probability that an agent is socially distancing on any given

day.

2. Social distance threshold: the minimum number of infected symptomatic contacts required

to cause an agent to social distance for that day.

3. Viral shedding: the fraction of individual pathogen level that an infected agent passes to

each of its contacts.

We ran two sets of simulations over different parameter spaces. Our primary simulation

ran through ten networks for each set of parameters given in Table 1. Based on the results of

this primary simulation, we ran a secondary set of simulations over the refined parameter

space given in Table 2 to provide a more detailed analysis of the phase transition behavior

observed in the primary simulations. The parameters for the secondary simulation were

selected based on our analysis of the primary data using regression trees to identify critical var-

iables and on the observed ranges where phase transitions were observed.

Results

Regression tree

We used a regression tree to partition the variation in final number of infected nodes across

model parameters and runs in our primary simulation [21]. Reductions in viral shedding were

associated with the primary partition in the regression tree in Fig 2. Viral shedding below 15%
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compared to a value of 25% were associated with a mean number of infections of 46 out of 500

agents. Reduced viral shedding with social distancing probability over 25% led to overall infec-

tion of approximately 2% of the agents. If the overall viral shedding is reduced dramatically

to 5%, even without additional social distancing of any type, less than 1% of the population

becomes infected.

Table 2. Secondary simulation parameters.

Parameter Value

Infection
Presymptomatic stage 3

Pathogen infection threshold 25

Asymptomatic infection stage 8

Symptomatic infection stage 8

Chance symptomatic 0.25, 0.50, 0.75

Network
Number of nodes (N) 500

Average node degree (K) 20

Rewiring probability 0.10

Initial outbreak size 5

Social Distance and Controls
Social distance probability (as percentage) 60, 61, 62,. . ., 78, 79, 80

Social distance threshold 1, 2, 3, 4, 5

Viral shedding 5%, 10%, 15%, 20%

https://doi.org/10.1371/journal.pone.0238412.t002

Table 1. Primary simulation parameters.

Parameter Description Value

Infection
Presymptomatic stage incubation period after exposure 1, 3, 5

Pathogen infection

threshold

amount of virus to become infected 25

Asymptomatic infection

stage

period of infection without symptoms 5, 8, 10

Symptomatic infection

stage

period of infection with symptoms 5, 8, 10

Chance symptomatic the probability an agent becomes symptomatic 0.25, 0.50, 0.75

Network
Number of nodes (N) number of agents 500

Average node degree

(K)

the average number of contact for agents 20

Rewiring probability probability each edge is rewired 0.05, 0.10, 0.25, 0.50

Initial outbreak size number of infected agents at the start of the run 5

Social Distance and
Controls
Social distance

probability

the probability (out of 100) that an agent socially distances on a

given day (reported as a percentage)

0, 10, 20, 30, 40, 50,

60, 70, 80, 90

Social distance

threshold

number of infected neighbors needed for an agent to social

distance

1, 2, 4, 8

Viral shedding the amount of pathogen level that the infected agents shed 1%, 5%, 25%

https://doi.org/10.1371/journal.pone.0238412.t001
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Achieving low levels of infections in populations without reducing viral shedding requires

significantly higher levels of global social distancing, where each agent has at least a 75%

chance of social distancing each day; this results in an approximately 1% infection rate among

agents. If each agent has less than a 75% chance of social distancing each day, the total infec-

tion rates for the populations are much higher; these range from a low of 21% (if individuals

Fig 2. Regression tree for total number of infections. This tree identifies the input features with strongest influence

on total number of infections. Each box contains the percentage of observations and associated mean viral load of

agents. For example, in the upper-left box, 67% of the simulations had viral shedding below 15%, and for those

simulations the mean number of infections was 46.

https://doi.org/10.1371/journal.pone.0238412.g002
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self-isolate in response to one infected social contact) all the way up to 97% with low levels of

any type of social distancing.

Thus, with a higher level of viral shedding, it becomes important to have agents self-isolate

when a contact becomes symptomatic. Even if this occurs, the infection rate in the population

is an order of magnitude higher (10% vs. 1%) than if the viral shedding is reduced. Failure to

achieve this strict social distancing in response to an infected social contact results in a wide-

spread outbreak with approximately 62% of the agents infected.

Phase transitions

Because our goal is to understand the behavior of phase transitions regarding total number of

infections in our model, we conducted secondary simulations on a refined parameter space

based on the results of our regression tree analysis. In these simulations, we observed sharp

phase transitions in the total number of infections as a function of all three control methods.

These transitions are shown in Figs 3, 4 and 5. In these figures, the maximum number of possi-

ble infections is 500, as there are 500 nodes in our networks.

In Fig 3, a phase transition exists between viral shedding of 5% and 10%, across all levels of

social distance thresholds and social distance probabilities. In Fig 4, a phase transition exists at

a social distance threshold of 1, across all levels of social distance probabilities and viral shed-

ding. If the social distance threshold parameter is 2 or more, then it is possible to have epidem-

ics that infect the entire population. In Fig 5, a phase transition exists around a social distance

probability of 73-74%, across all levels of social distance threshold and viral shedding. If the

social distance probability is 74% or more, then our simulations end with a small number of

infected agents.

Fig 3. Viral shedding. Viral shedding vs. total number of infected agents for different levels of social distance

thresholds (1 through 5) and for social distance probabilities varying from 60% to 80% at 1% intervals. A clear phase

transition exists at viral shedding 10-15% across the levels of social distance thresholds and social distance

probabilities.

https://doi.org/10.1371/journal.pone.0238412.g003
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Fig 4. Social distance threshold. Social distance threshold vs. total number of infected agents for different levels of

viral shedding (5% to 20%) and for social distance probabilities varying from 60% to 80% at 1% intervals. A clear phase

transition exists at a social distance threshold of 1, across all levels of social distance thresholds and social distance

probabilities.

https://doi.org/10.1371/journal.pone.0238412.g004

Fig 5. Social distance probability. Social distance probability vs. total number of infected agents for different levels of

viral shedding (5% to 20%) and for social distance threshold varying from 1 to 5. A phase transition exists around a

social distance probability of 73-74%, across the levels of social distance threshold and viral shedding.

https://doi.org/10.1371/journal.pone.0238412.g005
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Number of infections and length of epidemic

Given the regression tree analysis of our primary simulations, it is clear that viral shedding and

social distance probability play key roles. In our secondary simulations over a refined parame-

ter space, this becomes more clear. In Fig 6, we observe additional confirmation of the regres-

sion tree findings that the main driver of total number of infections is the viral shedding rate,

with social distance probability being the next critical factor. Specifically, simulations with

large total infections cluster to the upper left of the plot, where viral shedding rates are higher

and social distancing is enacted by approximately 60% of agents.

There is also a clear interaction between the social distance probability and viral shedding

parameters and the resulting number of infected agents and the length of the epidemic. These

interactions are shown in Figs 7 and 8. In Fig 7, there is clustering of long epidemics when the

probability is near 60% and the viral shedding rate is high. As the social distance probability

increases to 80% and the viral shedding rate decreases, there is a phase transition where simu-

lations result in outbreaks of short duration. In Fig 8, most infections result in either a limited

outbreak (less than 125 out of 500 agents) or almost all agents infected. As the social distance

probability is increased from 60% to 80%, the length of the epidemics increase while remaining

limited in total number of infections before sharply transitioning to a high number of infec-

tions during a return to short epidemic lengths.

Discussion

Mathematical modeling can provide tools to better understand epidemic dynamics and can

vary from purely theoretical to more data driven and predictive [22]. While a simple model

such as this one should not be used to make policy recommendations, it can provide a

Fig 6. Total infections across social distance probability and viral shedding. Social distance probability vs. viral

shedding, with social distance threshold and total number of infections indicated by color and size. Larger numbers of

infections occur with low social distance probability and high viral shedding rates.

https://doi.org/10.1371/journal.pone.0238412.g006
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Fig 7. Social distance probability and viral shedding. Social distance probability vs. viral shedding, with social

distance threshold and length of epidemic indicated by color and size. Longer outbreaks occur with low social distance

probability and high viral shedding rates.

https://doi.org/10.1371/journal.pone.0238412.g007

Fig 8. Total infections and length of epidemic. Length of epidemic vs. total number infected with social distance

probability, social distance threshold, and viral shedding indicated by color, size, and symbol. Data from secondary

simulations.

https://doi.org/10.1371/journal.pone.0238412.g008
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framework for empirical investigation and specific hypothesis testing related to social net-

works of smaller size exhibiting small world characteristics, such as those seen in college set-

tings [23]. Here we use our theoretical model to investigate how different control methods

impact the total number of infections in an epidemic on a network caused by a virus with a

presymptomatic stage and both asymptomatic and symptomatic pathways. We specifically

examine three main control measures that can be taken to reduce epidemic spread: 1) Global

social distancing with a fixed probability of adherence. 2) Individually initiated social isolation

when a threshold number of contacts are infected. 3) Reduction of viral shedding. We observe

sharp phase transitions in the total number of infected agents as the strength of each of these

control measures are varied.

To examine the full potential for global social distancing, we consider a wide range of possi-

ble scenarios varying from no social distancing to strong adherence to social distancing (90%

of agents). When considering the relationship between our theoretical model and real-world

contexts, the two extreme scenarios are easy to envision (zero social distancing is business as

usual and 90% is all but non-essential businesses closed), while more moderate social distanc-

ing scenarios are harder to translate into direct societal actions. Nevertheless, we observe in

our small-world models a clear phase transition associated with global social distancing. In

general, a global social distancing probability below 65% results in a wide-spread epidemic,

while a global social distancing probability above 75% limits the epidemic to a dramatically

lower number of total infections. We also found that social distance probabilities that

approached the threshold from below resulted in prolonged epidemics while with low overall

infection rates. For our secondary simulations over a refined parameter space, in the absence

of other control measures we observe that there is a phase transition for total infections that

occurs as the percentage of agents socially distancing changes from 73% to 74%.

Individual behavior taken during a pandemic can greatly affect the dynamics of disease

spread. For example, for SARS-CoV-2, the most commonly recommended guideline after con-

tact with an infected individual is 14 days of self-isolation to avoid exposing other individuals

[5, 7, 24]. However, despite these official guidelines, self-isolation following exposure requires

that infected individuals inform their contacts and that exposed individuals voluntarily com-

ply. Thus, from a theoretical perspective it is important to understand how different self-isola-

tion behaviors following contact with an infected agent impact epidemic spread. In our model,

we consider self-imposed social distancing as highly responsive to an agent’s short-term per-

ceptions regarding infection risks within their community. Thus, self-imposed social distanc-

ing/isolation occurs only on the days when the agent has sufficiently many symptomatic

contacts in the network. Interestingly, for self-isolation to significantly decrease the total num-

ber of infections in our model, an extreme level of responsiveness was needed by the agents

involved; in our model, it was necessary for self-isolation to occur following exposure to only

one infected agent. If self-isolation occurred only after contact with two or more symptomatic

agents on the same day, the effect on disease spread was minimal. Our findings also support

the well-known fact that real-world contact tracing following an individual’s positive test is

critical for limiting the spread of the infection [4]. An important difference between our theo-

retical model and viruses such as SARS-CoV-2 [13, 25] is that, in the real world, individuals

who have come in contact with an infected individual are not aware of their exposure.

Our theoretical reduction of viral shedding is motivated by behaviors such as mask wearing

or other use of personal protective equipment [10]. While in real-world contexts individual

responsiveness to recommended government actions are highly variable [24], a decrease in

viral shedding rate can be achieved through use of protective equipment [9]. When the viral

shedding in our model was set at a high shedding rate of 25%, global social distancing was

required to be greater than 80% to control the outbreak, resulting in an approximately 1%
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infection rate in the population. Other less stringent social distancing conditions result in a

viral infection rate between 25% and 97.5%. With a moderate rate of viral shedding, the social

distance threshold at which someone decides to self-isolate after coming into contact with an

infected individual becomes much more important. In our model, if the social distance thresh-

old is set to 1 (agents self-isolate after coming into contact with at least one infected agent),

then the final total infection rate in the population is approximately 12%. However, if the

behaviorally induced social distancing does not take place or takes place at a higher threshold,

then the total number of infections is much larger with the overall infection rate in the popula-

tion approximately 62%. If the viral shedding rate is very low, then the epidemic does not

spread and a low total number of infections is observed. Thus, there is a sharp phase transition

as the viral shedding rate moves from 5% to 10%.

An important observation regarding these phase transitions is the relatively extreme values

at which they occur, e.g., a high social distancing probability, a low social distancing threshold,

and a low viral shedding rate. These values are very high and low both within the context of

our model and of real-world epidemics that motivate our model. It would be of interest to

investigate whether or not, given an arbitrary set of values, a specific network and selection of

parameters could be found for which phase transitions occur near these values. Alternatively,

if no such network and choice of parameters exist, it would be of interest if a more rigorous

theoretical description could be given of the mechanism preventing this occurrence.

Conclusion

We develop an agent-based model of epidemic spread on Watts-Strogatz small world net-

works, where infected agents pass through a presymptomatic stage followed by either an

asymptomatic or symptomatic stage. We consider the impact of three control measures on the

total number of infected agents, with regard to both phase transitions and efficacy. The three

control methods we consider all generate sharp phase transitions in the total number of infec-

tions as the strength of the method varies. Social distancing controls in this model exhibit a

phase transition regarding total number of infections, either when imposed globally or when

based on individual response to infected contacts. Individually-enacted social distancing in the

form of temporary self-isolation must be immediately enacted if a social contact is known to

be infected in order to halt the spread of an epidemic. Reductions in viral shedding lead to sig-

nificant reductions in the size of the final infected population.
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